首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
More than one hundred organic compounds have been examined with respect to their precipitation abilities for starch. All the precipitates may be caused subsequent to complex formation between amylose and reagents. A slight change in molecular structure of the reagent often results in a marked change of the complex formation. The complicated nature of the complex formation is discussed. Some of naturally ocurring monoterpenes, especially l-menthone, showed superior properties as selective precipitants for amylose. So the fractionation of starch was attempted using l-menthone and a good result was obtained.  相似文献   

2.
Microfiltration membranes are not able to remove organic compounds. A hybrid system of a microfiltration membrane and bacteria was designed for separation of organic compounds and ions from wastewater. Colonies of bacteria (Escherichia coli) were subjected to sedimentation on the surface of a microfiltration membrane (0.2 μm cellulose acetate) as a complementary part of the system to enhance the removal efficiency. Three selected categories of materials i.e. preservative substances, cephalosporins and ions were used to prepare the synthetic feed. The results indicate that preservatives were reduced more than 80%, cephalosporins were removed around 60% and ions decreased more than 50% in the feed solution using this hybrid system for filtration. The interaction between bacteria and chemical materials is responsible for removal of organic compounds and ions from test solutions. However the interaction decreased over time due to the limited capacity of the bacteria.  相似文献   

3.
A genetic strategy generating wheat with very high amylose content   总被引:1,自引:0,他引:1       下载免费PDF全文
Resistant starch (RS), a type of dietary fibre, plays an important role in human health; however, the content of RS in most modern processed starchy foods is low. Cereal starch, when structurally manipulated through a modified starch biosynthetic pathway to greatly increase the amylose content, could be an important food source of RS. Transgenic studies have previously revealed the requirement of simultaneous down‐regulation of two starch branching enzyme (SBE) II isoforms both located on the long arm of chromosome 2, namely SBEIIa and SBEIIb, to elevate the amylose content in wheat from ~25% to ~75%. The current study revealed close proximity of genes encoding SBEIIa and SBEIIb isoforms in wheat with a genetic distance of 0.5 cM on chromosome 2B. A series of deletion and single nucleotide polymorphism (SNP) loss of function alleles in SBEIIa, SBEIIb or both was isolated from two different wheat populations. A breeding strategy to combine deletions and SNPs generated wheat genotypes with altered expression levels of SBEIIa and SBEIIb, elevating the amylose content to an unprecedented ~85%, with a marked concomitant increase in RS content. Biochemical assays were used to confirm the complete absence in the grain of expression of SBEIIa from all three genomes in combination with the absence of SBEIIb from one of the genomes.  相似文献   

4.
X-Ray analyses of the complexes of amylose with various organic compounds were carried out. Only two kinds of diffraction patterns were observed in the dried state. The first one corresponds to the helix of amylose consisting of six glucose residues per helical turn (61-helix) and the second to that consisting of seven glucose residues (71-helix). The 71-helix was obtained with a relatively wide range of the size of the complexing agents, 4.5~6.0 Å in diameter of cross section. Mutual transitions between both helices were made possible by displacing the contained agent with one of the other kinds. During the transition courses, the helix with a fractional number of glucose residues could not be seen. It is, hence, infered that the helix is stabilized by hydrogen bonds between individual helical loops. The diffraction patterns of cyclodextrin complexes were also examined. Under suitable conditions α- and β-dextrins can produce complexes having analogous crystalline structures of 61-helix and 71-helix amyloses, respectively. This is confirmatory evidence for the helical structure of amylose.  相似文献   

5.
6.
T. D. Simpson 《Biopolymers》1970,9(9):1039-1047
Solutions of amylose in ethylenediamine yield a crystalline film complex upon evaporation of solvent. The x-ray analysis indicates the presence of a tetragonal-shaped cell with a symmetry approximating that of space group P212121. The amylose sixfold helix has a diameter of 13.3 Å and a translation period of 8.0Å. Chemical and physical analyses support a complexing ratio of one ethylenediamine molecule to every two glucose units. The structure is nearly identical to any amylose–dimethyl sulfoxide complex previously examined. The square mode of packing arrangement appears to result from complexation between amylose chains. Such complexing indicates a much greater degree of amylose interaction than is observed in amylose complex structures having a hexagonal close-packing arrangement.  相似文献   

7.
Yasuyuki Tezuka 《Biopolymers》1994,34(11):1477-1482
Nuclear Overhauser effect spectroscopy measurements on cellulose triacetate and on amylose triacetate with a mixing time of 500 ms, on the order of T1, of acetyl protons, were performed to detect the specific through-space interaction between acetyl groups arising from their helix structures in solution. For cellulose triacetate, cross peaks were detected in CDCl3 between acetyl proton signals at 3 and 6 positions on an anhydroglucose unit. In DMSO-d6, on the other hand, correlation peaks were observed not only between the 3 and 6 positions but also the 2 and 6 positions. For amylose triacetate, cross peaks were detected in CDCl3 between the acetyl proton signals at the 2 and 6 positions. The through-space interaction of acetyl groups in cellulose triacetate and in amylose triacetate in solution was then interpreted based on their three-dimensional structures in solid state determined by x-ray crystallography. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
High temperature significantly alters the amylose content of rice, resulting in mature grains with poor eating quality. However, only few genes and/or quantitative trait loci involved in this process have been isolated and the molecular mechanisms of this effect remain unclear. Here, we describe a floral organ identity gene, OsMADS7, involved in stabilizing rice amylose content at high temperature. OsMADS7 is greatly induced by high temperature at the early filling stage. Constitutive suppression of OsMADS7 stabilizes amylose content under high temperature stress but results in low spikelet fertility. However, rice plants with both stable amylose content at high temperature and normal spikelet fertility can be obtained by specifically suppressing OsMADS7 in endosperm. GBSSI is the major enzyme responsible for amylose biosynthesis. A low filling rate and high expression of GBSSI were detected in OsMADS7 RNAi plants at high temperature, which may be correlated with stabilized amylose content in these transgenic seeds under high temperature. Thus, specific suppression of OsMADS7 in endosperm could improve the stability of rice amylose content at high temperature, and such transgenic materials may be a valuable genetic resource for breeding rice with elite thermal resilience.  相似文献   

9.
Starch has great importance in human diet, since it is a heteropolymer of plants, mainly found in roots, as potato, cassava and arrowroots. This carbohydrate is composed by a highly-branched chain: amylopectin; and a linear chain: amylose. The proportion between the chains varies according to the botanical source. Starch hydrolysis is catalyzed by enzymes of the amilolytic system, named amylases. Among the various enzymes of this system, the glucoamylases (EC 3.2.1.3 glucan 1,4-alpha-glucosidases) are the majority because they hydrolyze the glycosidic linkages at the end of starch chains releasing glucose monomers. In this work, a glucoamylase secreted in the culture medium, by the ascomycete Aspergillus brasiliensis, was immobilized in Dietilaminoetil Sepharose-Polyethylene Glycol (DEAE-PEG), since immobilized biocatalysts are more stable in long periods of hydrolysis, and can be recovered from the final product and reused for several cycles. Glucoamylase immobilization has shown great thermal stability improvement over the soluble enzyme, reaching 66% more activity after 6?h at 60?°C, and 68% of the activity after 10 hydrolysis cycles. A simplex centroid experimental mixture design was applied as a tool to characterize the affinity of the immobilized enzyme for different starchy substrates. In assays containing several proportions of amylose, amylopectin and starch, the glucoamylase from A. brasiliensis mainly hydrolyzed the amylopectin chains, showing to have preference by branched substrates.  相似文献   

10.
The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin) or linear (amylose). The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS) is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST) is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM). We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is exclusively involved in amylose synthesis.  相似文献   

11.
Total starch, amylose content and amylose-included lipid phosphorus and lysophosphatidylcholine (LPC) were measured in normal Glacier (G) and Hi Amylose Glacier (HA) barley varieties during germination. From days three to six, alkaline and acidic lysophospholipase (LPL) activities in the starchy endosperm were measured and the distribution of these activities between a soluble and particulate form determined. During germination the amylose content of the starches increases as the total starch levels decline. The starch-bound LPC and lipid phosphorus disappear at the same rate between days three and six in both barley varieties, indicating no discrimination among the different lipid-included amylose population for degradation. However, both lipid phosphorus and LPC disappear more rapidly in the G than in the HA variety. This is presumably due to the slightly larger content of LPC per mg amylose of the G than of the HA variety, equivalent to 134 and 150 anhydroglucose residues per lipid molecule in G and HA, respectively. There is no increase in starch-bound lipid phosphorus or LPC expressed as nmol of phosphorus or LPC per mg amylose as amylose content declines, indicating no selective resistance of lipid-included amylose to degradation. The alkaline and acidic LPC activities in each variety increase 2–4-fold between days four and five. In both varieties ca 30% of the acidic LPL and ca 50–60% of the alkaline LPL is particulate from days three to six. No correlation can be made between the content of amylose or amylose-included lipid and particulate LPL activity. However, the possibility that particulate LPL activity is associated with specific populations of residual amylose-included lipid molecules cannot be excluded.  相似文献   

12.
Summary Eight dull mutants that lower the amylose content of rice endosperm as well as waxy mutant and a cultivar with common grains were crossed in a diallele manner. The amylose content of F1 and F2 seeds was determined on the basis of single grain analysis. It was concluded that the low amylose content of dull mutants is under monogenic recessive control. Alleles for low amylose content are located at five loci designated as du-1, du-2, du-3, du-4 and du-5. These loci are independent of wx locus located on chromosome 6. The five du loci have an additive effect in lowering the amylose content. Two loci, du-1 and du-4, were found to be located on chromosomes 7 and 4, respectively.  相似文献   

13.
The crystal and molecular structure of the complex of amylose with dimethyl sulfoxide has been studied by a combination of stereochemical analysis, potential energy, and X-ray diffraction methods. The complex crystallizes in a pseudotetragonal unit cell with a = b = 19.17 Å and c (fiber axis) = 24.39 Å, with two antiparallel chains per unit cell and space group P212121. The amylose chain is a left-handed 61(1.355) helix with three turns per crystallographic repeat. The O(6) rotational position is approximately gt. Dimethyl sulfoxide is located inside the helix with one DMSO molecule for every three glucose residues. An additional four DMSO molecules and eight water molecules each are located in the large interstices between chains, and it is the interaction of these molecules with the helix that results in the pseudotetragonal chain packing. The interstitial DMSO is the source of the previously reported additional layer lines, which are not consistent with the 8.13-Å amylose repeat distance. The final R factor for the layers with amylose contribution to the structure factors was 0.29, while the overall R factor was 0.35. The stereochemical packing analysis provided suitable phasing models for the subsequent X-ray refinement.  相似文献   

14.
R L Scruggs  E K Achter  P D Ross 《Biopolymers》1972,11(9):1961-1972
In order to examine the thermodynamic effects of exposing nucleic acid bases to water, we have measured the solubility of adenine, cytosine, and uracil in water and in organic solvents as a function of temperature. Transfer of a nucleic acid base from an organic environment into water is characterized by positive values for ΔH and for ΔS. We conclude from this result that the overall interaction between nucleic acid bases and water cannot be hydrophobic. If the effect we observe represents structure breaking in water by nucleic acid bases, this process would account for a major portion of the large, positive melting entropy of DNA, and would also contribute substantially to the melting enthalpy.  相似文献   

15.
The elongation of amylose and amylopectin chains in isolated starch granules   总被引:14,自引:1,他引:13  
The aim of this work was to investigate the conditions required for amylose synthesis in starch granules. Although the major granule-bound isoform of starch synthase - GBSSI - catalyses the synthesis of amylose in vivo, 14C from ADP[14C]glucose was incorporated primarily into a specific subset of amylopectin chains when supplied to starch granules isolated from pea (Pisum sativum L.) embryos and potato (Solanum tuberosum L.) tubers. Incubation of granules with soluble extracts of these organs revealed that the extracts contained compounds that increased the incorporation of 14C into amylose. These compounds were rendered inactive by treatment of the extracts with α-glucosidase, suggesting that they were malto-oligosaccharides. Consistent with this idea, provision of pure malto-oligosaccharides to isolated granules resulted in a dramatic shift in the pattern of incorporation of 14C, from amylopectin chains to amylose molecules. Comparison of the pattern of incorporation in granules from wild-type peas and lam mutant peas which lack GBSSI showed that this effect of malto-oligosaccharides was specifically on GBSSI. The significance of these results for understanding of the synthesis of amylose and amylopectin in storage organs is discussed.  相似文献   

16.
Soil carbon turnover models generally divide soil carbon into pools with varying intrinsic decomposition rates. Although these decomposition rates are modified by factors such as temperature, texture, and moisture, they are rationalized by assuming chemical structure is a primary controller of decomposition. In the current work, we use near edge X‐ray absorption fine structure (NEXAFS) spectroscopy in combination with differential scanning calorimetry (DSC) and alkaline cupric oxide (CuO) oxidation to explore this assumption. Specifically, we examined material from the 2.3–2.6 kg L?1 density fraction of three soils of different type (Oxisol, Alfisol, Inceptisol). The density fraction with the youngest 14C age (Oxisol, 107 years) showed the highest relative abundance of aromatic groups and the lowest O‐alkyl C/aromatic C ratio as determined by NEXAFS. Conversely, the fraction with the oldest C (Inceptisol, 680 years) had the lowest relative abundance of aromatic groups and highest O‐alkyl C/aromatic C ratio. This sample also had the highest proportion of thermally labile materials as measured by DSC, and the highest ratio of substituted fatty acids to lignin phenols as indicated by CuO oxidation. Therefore, the organic matter of the Inceptisol sample, with a 14C age associated with ‘passive’ pools of carbon (680 years), had the largest proportion of easily metabolizable organic molecules with low thermodynamic stability, whereas the organic matter of the much younger Oxisol sample (107 years) had the highest proportion of supposedly stable organic structures considered more difficult to metabolize. Our results demonstrate that C age is not necessarily related to molecular structure or thermodynamic stability, and we suggest that soil carbon models would benefit from viewing turnover rate as codetermined by the interaction between substrates, microbial actors, and abiotic driving variables. Furthermore, assuming that old carbon is composed of complex or ‘recalcitrant’ compounds will erroneously attribute a greater temperature sensitivity to those materials than they may actually possess.  相似文献   

17.
The cellular pathway of sucrose transfer from the endosperm cavity to the starchy endosperm of developing grains of wheat (Triticum turgidum) has been elucidated. The modified aleurone and sub-aleurone cells exhibit a dense cytoplasm enriched in mitochondria and endoplasmic relicilium. Significantly, the sub-aleurone cells are characterized by secondary wall ingrowths. Numerous plasmodesmata interconnect all cells between the modified aleurone and starchy endosperm. The pro-tonophore carbonylcyanide-m-chlorophenyl hydrazone (CCCP) slowed [14C]sucrose uptake by grain tissue slices enriched in modified aleurone and sub-aleurone cells but had no effect on uptake by the starchy endosperm. The fluorescent weak acid sulphorhodamine G (SRG) was preferentially accumulated by the modified aleurone and sub-aleurone cells, and this uptake was sensitive to CCCP. The combined plasma membrane surface areas of the modified aleurone and sub-aleurone cells appeared to be sufficient to support the in vivo rates of sucrose transfer to the starchy endosperm. Plasmolysis of intact excised grain inhibited [14C]sucrose transfer from the endosperm cavity to the starchy endosperm. The sulphydryl group modifier p-chloromercuribenzenesulphonie acid (PCMBS) decreased [14C]sucrose uptake by the modified aleurone and sub-aleurone cells but had little effect on uptake by the starchy endosperm. In contrast, when PCMBS and [14C]sucrose were supplied to the endosperm cavity of intact excised grain, PCMBS slowed accumulation by all tissues equally. Estimates of potential sucrose fluxes through the interconnecting plasmodesmata were found to be within the published range. It is concluded that the bulk of sucrose is accumulated from the endosperm cavity by the modified aleurone and sub-aleurone cells and subsequently transferred through the symplast to the starchy endosperm.  相似文献   

18.
In this paper, we propose a structure for organo-mineral associations in soils based on recent insights concerning the molecular structure of soil organic matter (SOM), and on extensive published evidence from empirical studies of organo-mineral interfaces. Our conceptual model assumes that SOM consists of a heterogeneous mixture of compounds that display a range of amphiphilic or surfactant-like properties, and are capable of self-organization in aqueous solution. An extension of this self-organizational behavior in solution, we suggest that SOM sorbs to mineral surfaces in a discrete zonal sequence. In the contact zone, the formation of particularly strong organo-mineral associations appears to be favored by situations where either (i) polar organic functional groups of amphiphiles interact via ligand exchange with singly coordinated mineral hydroxyls, forming stable inner-sphere complexes, or (ii) proteinaceous materials unfold upon adsorption, thus increasing adhesive strength by adding hydrophobic interactions to electrostatic binding. Entropic considerations dictate that exposed hydrophobic portions of amphiphilic molecules adsorbed directly to mineral surfaces be shielded from the polar aqueous phase through association with hydrophobic moieties of other amphiphilic molecules. This process can create a membrane-like bilayer containing a hydrophobic zone, whose components may exchange more easily with the surrounding soil solution than those in the contact zone, but which are still retained with considerable force. Sorbed to the hydrophilic exterior of hemimicellar coatings, or to adsorbed proteins, are organic molecules forming an outer region, or kinetic zone, that is loosely retained by cation bridging, hydrogen bonding, and other interactions. Organic material in the kinetic zone may experience high exchange rates with the surrounding soil solution, leading to short residence times for individual molecular fragments. The thickness of this outer region would depend more on input than on the availability of binding sites, and would largely be controlled by exchange kinetics. Movement of organics into and out of this outer region can thus be viewed as similar to a phase-partitioning process. The zonal concept of organo-mineral interactions presented here offers a new basis for understanding and predicting the retention of organic compounds, including contaminants, in soils and sediments.  相似文献   

19.
The β‐carotene embedded amylose microparticles (BC‐AmMPs) were prepared in one‐step by utilizing the unique catalytic activity of amylosucrase from Deinococcus geothermalis (DgAS), which synthesizes linear amylose chains using sucrose as the sole substrate. Synthesized amylose chains self‐assembled with β‐carotene to form well‐defined spherical microparticles with an encapsulation yield of 65%. The BC‐AmMPs produced (average diameter ~8 µm) were bright orange due to the embedded β‐carotene, and this was confirmed by Raman analysis. XRD showed BC‐AmMPs had a B‐type amylose crystal structure with a degree of crystallinity lower than that of AmMPs. This lower crystallinity of AmMP after BC encapsulation was confirmed by DSC analysis. Decreased enthalpy of gelatinization (ΔHgel) of BC‐AmMP implied that molecular order within the amylose microstructure was influenced by the presence of BC. The stability of BC against environmental stresses, such as UV light and oxidative stress, was significantly enhanced by its encapsulation. The authors propose a new approach to the preparation of an amylose based carrier system for active compounds or expensive food ingredients with poor stabilities during storage or processing. Given that amylose is a safe food material, the devised encapsulation system will find wide range of practical applications in the food industry. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1640–1646, 2017  相似文献   

20.
Salt-tolerant Agrostis stolonifera ecotypes commonly grow on upper salt marshes, environments regarded as having a limited nitrogen supply. The interaction between salinity and nitrate supply limitation was studied in two ecotypes of A. stolonifera, one isolated from an upper salt marsh and one from an inland habitat. The ion, amino acid, glycine betaine and sugar contents of the two ecotypes were determined over a range of external salt concentrations and levels of nitrate supply. In vivo nitrate reductase activity was also measured. Several low molecular weight nitrogenous compounds accumulated in the salt-stressed plants. Nitrogen supply limitation had a great effect on the way in which the plants responded to salt stress. In particular, the concentrations of the soluble organic nitrogenous compounds were reduced. The results are discussed with respect to the salt marsh environment, and possible models for cytoplasmic osmoregulation are presented.Acknowledgements: One of us (MJH) gratefully acknowledges the receipt of a research studentship from the Science Research Council, U.K. We would also like to thank Mrs E. E. Griffiths for skilled technical assistance, and Dr I. Ahmad for help with the amino acid analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号