共查询到20条相似文献,搜索用时 15 毫秒
1.
Yasuo Kondo Masuo Nakano Yasuhiko Fujino 《Bioscience, biotechnology, and biochemistry》2013,77(3):719-721
A rice lamina inclination test that is simple and specific for brassinosteroids was used as a micro-quantitative bioassay for brassinolide 1 and its 6-keto congener, castasterone 2, in the concentration range of 5 x 10–5 /ig/ml to 5 x 10–3μg/ml, when uniform seedlings of the rice cultivars Arborio J-l and Nihonbare were selected. A phytohormone, indole-3-acetic acid (IAA), showed similar activity in this bioassay. Its lowest effective concentration, however, was 50 /ig/μl, about five orders of magnitude greater than that of brassinolide. Other phytohormones, abscisic acid (ABA) and the cytokinins kinetin and A6-benzyladenine, inhibited the lamina inclination of rice seedlings. The addition of a cytokinin reduced the promoting effect of brassinolide. Thus, the rice lamina inclination test can be used both as a micro-quantitative bioassay for brassinosteroids and as a method for detecting antibrassinolide compouds. 相似文献
2.
3.
Norman Shaw 《Microbiology and molecular biology reviews》1970,34(4):365-377
4.
5.
Norman Shaw 《Microbiological reviews》1970,34(4):365-377
6.
Anne-Marie Carey Kirk G. Scheckel Enzo Lombi Matt Newville Yongseong Choi Gareth J. Norton John M. Charnock Joerg Feldmann Adam H. Price Andrew A. Meharg 《Plant physiology》2010,152(1):309-319
Rice (Oryza sativa) is the staple food for over half the world''s population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a ± stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols.Paddy rice (Oryza sativa) is particularly effective, compared to other cereals, at accumulating arsenic (As) in shoot and grain (Williams et al., 2007b). Rice is the staple food for over half the world''s population (Fageria, 2007) and rice represents a significant dietary source of inorganic As, a class 1, nonthreshold carcinogen, particularly in Southeast Asia (Meharg et al., 2009). Inorganic As levels in rice grain are problematic even where soil As is at background levels, derived from geogenic sources (Lu et al., 2009; Meharg et al., 2009). However, widespread pollution of paddy soils with As, leading to further elevation of grain As, has occurred in some regions due to base and precious mining (Liao et al., 2005; Zhu et al., 2008), irrigation of paddies with As-elevated groundwaters (e.g. Meharg and Rahman, 2003; Williams et al., 2006), and the use of arsenical pesticides (Williams et al., 2007a). Unlike other cereal grains, paddy rice cultivation is dependent of soils being anaerobic, and it is this anoxia that gives rise to elevated As concentrations in the plant. Anaerobic soil conditions lead to the mobilization of As as arsenite, where under aerobic systems arsenate dominates (Xu et al., 2008). Arsenite is efficiently assimilated by rice roots through silicic acid transport pathway (Ma et al., 2008).Knowledge of As metabolism and partitioning within plants, particularly rice, is still developing rapidly (Zhao et al., 2009). Several studies have now shown that As in rice vegetative tissue and grain is predominantly speciated as inorganic As and the methylated species dimethylarsinic acid (DMA), with variable, though low, levels of monomethyl arsonic acid (MMA; Abedin et al., 2002a; Williams et al., 2005, 2006; Norton et al., 2009). Arsenate is an analog of phosphate and competes with phosphate for rice root uptake (Abedin et al., 2002a) while arsenite is taken up by rice roots via silicic acid transporters (Ma et al., 2008). Abedin et al. (2002b) demonstrated that the methylated species DMA and MMA are also taken up by rice plants although at a much slower rate than inorganic As, with the protonated neutral forms also transported through silicic acid pathway (Li et al., 2009). Arsenate is reduced to arsenite within the rice root (Xu et al., 2008; Zhao et al., 2009), which then enters the xylem via a silicic acid/arsenite effluxer (Ma et al., 2008; Zhao et al., 2009). Arsenite may be detoxified through complexation with thiol-rich peptides including phytochelatins (PCs) and glutathione followed by sequestration into vacuoles (Bleeker et al., 2006; Raab et al., 2007b; Zhao et al., 2009). Raab et al. (2007a) found that while methylated As species are taken up by rice roots much less efficiently than inorganic species, they appear to be translocated within the plant more efficiently. The comparative contributions of xylem and phloem transport, in translocation of As to the grain, are unknown.The main species within rice grain, along with DMA, are inorganic As, particularly arsenite, which may be complexed with thiols (Williams et al., 2005; Lombi et al., 2009). Nutrients are unloaded into the grain from the ovular vascular trace (OVT) into the nucellar tissue and from there are uploaded, via the apoplast into the filial tissue (the aleurone and the endosperm; Krishnan and Dayanandan, 2003). Lombi et al. (2009) recently suggested that this may represent a physiological barrier that As species cross with differential efficiency. However, the transport and unloading of As to/into the grain, which are key processes in terms of human exposure to this contaminant, are far from being fully understood.This study investigated the differential efficiency with which important As species are translocated and unloaded into the rice grain and the comparative contributions of phloem and xylem transport. Rice panicles were excised below the flag leaf node during grain development, 10 DPA, and treated to a hydroponically administered 48-h pulse of arsenite, arsenate, arsenite glutathione, or DMA. Total As concentrations in flag leaf, grain, and husk samples for each treatment were quantified by inductively coupled plasma mass spectroscopy (ICP-MS), and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy (XANES) analysis. To evaluate the contributions of phloem versus xylem transport, a stem-girdling treatment was applied, using steam to destroy phloem cells in a second set of panicles prior to a pulse of either DMA or arsenite. The spatial unloading of As species into the developing grain was examined by synchrotron x-ray fluorescence (XRF) mapping, and fluorescence microtomography for the DMA and arsenite treatments. 相似文献
7.
Yanagisawa M 《Neurochemical research》2011,36(9):1623-1635
Glycolipids are compounds containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety.
Because of their expression patterns and the intracellular localization patterns, glycolipids, including stage-specific embryonic
antigens (SSEA-3, SSEA-4, and possibly SSEA-1) and gangliosides (e.g., GD3, GD2, and A2B5 antigens), have been used as marker
molecules of stem cells. In this review, I will introduce glycolipids expressed in pluripotent stem cells (embryonic stem
cells, induced pluripotent stem cells, very small embryonic-like stem cells, amniotic stem cells, and multilineage-differentiating
stress enduring cells), multipotent stem cells (neural stem cells, mesenchymal stem cells, fetal liver multipotent progenitor
cells, and hematopoietic stem cells), and cancer stem cells (brain cancer stem cells and breast cancer stem cells), and discuss
their availability as biomarkers for identifying and isolating stem cells. 相似文献
8.
9.
利用HPLC法测定水稻子粒主要黄酮类化合物 总被引:1,自引:0,他引:1
通过建立水稻儿茶素、杨梅素、槲皮素和山奈酚含量的HPLC测定方法,研究水稻黄酮类化合物含量及组成差异,为高黄酮水稻种质资源的定向改良提供理论依据.本研究建立了利用HPLC法测定水稻黄酮类化合物含量的测定方法;水稻糙米的黄酮化合物组成主要以儿茶素和山奈酚的形式存在,不含杨梅素和槲皮素,不同品种儿茶素和山奈酚组成比例及含量存在差异;粳稻含有更丰富的儿茶素,有色稻山奈酚和儿茶素含量大于无色稻;糙米中含有较高的黄酮类化合物,而精米中不含或少含黄酮类化合物. 相似文献
10.
杂交水稻直链淀粉含量遗传分析 总被引:12,自引:0,他引:12
杂交水稻稻谷是从F1代杂合体收获的F2代种子,由于F2代属分离群体,直链淀粉含量等稻米品质会发生分离现象.本研究选择直链淀粉含量低、中、高的5个亲本配组的5个杂交组合,按单粒分析法分析双亲亲本、F1和F2代的种子的直链淀粉含量.结果表明,F2代呈现1(低):3(中+高)孟德尔分离规律.在5个组合的单粒分析中发现分离的F2代群体呈双峰的连续分布,该现象表明高直链淀粉含量对低直链淀粉含量为不完全显性,除单一基因控制外,还受微效多基因修饰.因此杂交水稻育种工作中,尤其是优质杂交稻新组合选育时,必须注意选择双亲的直链淀粉含量基本一致,以防分离现象影响米质. 相似文献
11.
12.
Changes in the content of starch, protein, and RNA and in the activity of their hydrolases in the rice endosperm (Oryza sativa L., variety IR8) were determined during the first week of germination without added nutrient both in the dark and in the light. Changes were generally more rapid in the dark than in the light. Oxygen uptake and RNase activity started to increase and the root protruded on the second day, followed by the coleoptile on the third day, and the primary leaf on the fourth day. ATP level was at a maximum on the fourth day. The activity of amylases and R enzyme increased progressively, but that of phosphorylase tended to decrease during starch degradation. A new α amylase isozyme band appeared during germination. Glucose was the major product of starch degradation. Sucrose, maltose, maltotriose, raffinose, and fructose were also detected. Protease activity reached a maximum on the fifth or sixth day and closely paralleled the increase in soluble amino N and soluble protein. 相似文献
13.
14.
Glycolipids and opiate action 总被引:3,自引:0,他引:3
15.
水稻糙米高蛋白基因的QTL定位 总被引:5,自引:1,他引:5
利用由糙米蛋白含量高达14.55%的广东省农家品种三春种配制的BC1群体进行糙米高蛋白基因的QTL定位,定位到了6个糙米蛋白基因的QTLs,其中有3个新的QTLs。有1个增效基因qCP1-2为主效基因,解释的表型变异高达44.2%,有可能是与谷蛋白基因Glu-1紧密连锁的新调控序列。本研究表明,所利用的BC1群体的糙米蛋白可能主要是由1个主效QTL所控制。 相似文献
16.
水稻产量和稻米品质的提高是水稻研究的中心问题。水稻产量主要取决于单株穗数、每穗粒数和粒重;粒重作为一个非常重要的产量性状,由粒长、粒宽和粒厚所决定。影响粒重和粒形的基因多为数量性状基因,精细定位并克隆到的较少。本研究中,我们克隆到一个影响粒形的基因SL,超表达(SL-OE)转基因植株表现出粒长增加、粒宽减小、叶宽减小的表型;同时,SL-RNAi的转基因植株呈现出粒长缩短、叶宽增加的表型。颖壳表面细胞在超表达转基因植株中伸长,而在RNAi转基因植株中缩短。叶片横向细胞数目在转基因植株中发生变化,推测乩基因可能与细胞分裂相关。SL-OE转基因植株中G嗽因被明显上调,说明盟基因可能通过调节GW2的表达对水稻粒宽造成影响。另外,观基因影响稻米的品质。 相似文献
17.
水稻花色苷含量的遗传研究进展 总被引:5,自引:2,他引:5
花色苷作为水稻重要的生物活性物质,已成为当前功能性水稻研究开发的热点之一。本文从水稻花色苷的生物合成及其组成成分入手,着重介绍了水稻花色苷含量的影响因素、遗传及分子机理的研究现状以及富集花色苷水稻种质鉴定、筛选与创新现状,并探讨了今后以提高水稻花色苷含量为目标的功能性水稻研究内容和方向。 相似文献
18.
Natural Variations in SLG7 Regulate Grain Shape in Rice 总被引:1,自引:0,他引:1
Yong Zhou Jun Miao Haiyong Gu Xiurong Peng Mamotshewa Leburu Fuhai Yuan Houwen Gu Yun Gao Yajun Tao Jinyan Zhu Zhiyun Gong Chuandeng Yi Minghong Gu Zefeng Yang Guohua Liang 《Genetics》2015,201(4):1591-1599
Rice (Oryza sativa) grain shape, which is controlled by quantitative trait loci (QTL), has a strong effect on yield production and quality. However, the molecular basis for grain development remains largely unknown. In this study, we identified a novel QTL, Slender grain on chromosome 7 (SLG7), that is responsible for grain shape, using backcross introgression lines derived from 9311 and Azucena. The SLG7 allele from Azucena produces longer and thinner grains, although it has no influence on grain weight and yield production. SLG7 encodes a protein homologous to LONGIFOLIA 1 and LONGIFOLIA 2, both of which increase organ length in Arabidopsis. SLG7 is constitutively expressed in various tissues in rice, and the SLG7 protein is located in plasma membrane. Morphological and cellular analyses suggested that SLG7 produces slender grains by longitudinally increasing cell length, while transversely decreasing cell width, which is independent from cell division. Our findings show that the functions of SLG7 family members are conserved across monocots and dicots and that the SLG7 allele could be applied in breeding to modify rice grain appearance. 相似文献
19.
20.
Glycolipids of fungi and plants 总被引:1,自引:0,他引:1
J L Harwood 《Biochemical Society transactions》1977,5(6):1677-1682