首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the biosynthesis of the benzazepine alkaloid alpinigenine a N-methylation step followed by hydroxylation α to nitrogen has now been shown more conclusively to be involved in the transformation of a N-heterocyclic ring system. After feeding Papaver bracteatum plants both the precursors (±)-tetrahydropalmatine-[8,13,14-3H] and (±)-tetrahydropalmatine methiodide-[8,13,14-3H;8-4C] an identical mode of abstraction of tritium was observed including a complete loss of the isotope from C-14. The next member in the biogenetic chain, muramine-[8-14C], was incorporated into alpinigenine very efficiently. Furthermore, using structurally different precursors not utilized for normal alkaloid formation, e.g. 2′-hydroxymethyl-laudanosine-[14CH2OH], 13-hydroxymuramine-[8-14C], the specificity of alkaloid metabolism was examined in the whole plant. Tracer dilution technique was applied to confirm the occurrence in the plant of three established intermediates. Chemical syntheses of four of the alkaloids used during these investigations were developed.  相似文献   

2.
Clonal variants of PC12 cells with respect to catecholamine biosynthesis were isolated, and the catecholamine content was measured by high performance liquid chromatography with electrochemical detection. The dopamine content of 13 subclones, which were selected and isolated in tyrosine-free medium, was substantially higher than the control level: 0.91 +/- 0.10 nmol/mg protein (mean +/- SEM; n = 3). In contrast, the noradrenaline content showed a marked heterogeneity: only two subclones contained noradrenaline levels similar to or higher than the control level: 0.40 +/- 0.05 (n = 5). The rest of them contained below the level of 0.20, and only negligible amounts of noradrenaline were found in four subclones. Thus, the noradrenaline-to-dopamine ratio varied widely between 0.003:1 and 0.53:1. This divergence of the noradrenaline content appears to be related to differing levels of dopamine beta-monooxygenase activity. The administration of ascorbate to the medium alone, however, did not restore the level of noradrenaline to the normal level in a subclone. Heterogeneity of the response to applied glucocorticoid was also demonstrated.  相似文献   

3.
4.
Earlier observations of Dawson on the relative incorporation of [2-3H]- and [6-3H]-nicotinic acid into nicotine have been confirmed in intact Nicotiana tabacum plants. All the tritium in the nicotine derived from [2-3H]-nicotinic acid was located at C-2 of the pyridine ring. However the radioactive nicotine derived from [6-3H]-nicotinic acid was not labelled specifically at C-6 with tritium. By carrying out feeding experiments with [6-14-C, 2-3H]- and [6-14C, 3H]-nicotinic acids, it was established that there was very little loss of tritium from C-2 and C-6 of nicotinic acid during 5 days of metabolism in the tobacco plant.  相似文献   

5.
A simple technique for comparing and quantifying the ventilationcapacity of vessels used for plant tissue culture is described.Ethylene was injected into culture vessels and its rate of lossmonitored by gas chromatography. From the resulting exponentialdecay curves, the time in hours for half the ethylene to belost (t50) was calculated and used to compare different containersand sealing methods. Cultures of Ficus lyrata Warb. and Gerberajamesonii Bolus grown for up to 28 d in plastic vessels sufficientlywell-sealed to generate t50 values of approx. 16 h, accumulatedethylene and carbon dioxide in association with depleted oxygen.The relationship between carbon dioxide accumulation and oxygendepletion within culture vessels indicated little if any anaerobicrespiration. Gerbera explants did not appear to be affectedby these gaseous environments. However, in Ficus, leaf expansionwas approximately halved, although fresh and dry mass of wholeshoots was not decreased. The smaller leaf size is attributedto the action of accumulated ethylene, because when the gaswas absorbed with 'Ethysorb' granules or its action inhibitedby 2,5–norbornadiene, leaf growth was normal. The removalof carbon dioxide with potassium hydroxide did not enhance theethylene effect, indicating little if any antagonism of ethyleneaction by carbon dioxide. Shoots of potato (Solanum tuberosumL. cv. Red Craig's Royal) were shortened in sealed culture vessels,in association with swelling, diageotropism and miniaturizationof the leaves. When tuber production was induced by decreasingthe photoperiod, increasing the sucrose concentration and includingcytokinin in the medium, partial sealing promoted conspicuoushypertrophy of the lenticels. These responses of potato wereprevented if the ethylene absorbant mercuric perchlorate wasenclosed together with the cultures. Plant tissue culture, poor aeration, ethylene, leaf expansion, Ficus lyrata Warb., Gerbera jamesonii Bolus, Solanum tuberosum L. cv. Red Craig's Royal  相似文献   

6.
The medicinal shrub Carapichea ipecacuanha (ipecac) is an amphitropic species with three disjunct areas of distribution. In the Brazilian Atlantic and Amazonian ranges, the species was associated mostly with the understory of seasonal semideciduous forests, whereas in the Central American–Colombian range, the species occurred in the understory of moist evergreen forests. We examined the phylogeographic structure of ipecac using chloroplast trnT‐trnL and nuclear internal transcribed spacer (ITS) sequences from 120 and 46 specimens, respectively. To complement existing data on root alkaloid profiles, we used high‐performance liquid chromatography to assess the levels of emetine and cephaeline in 33 specimens from the two Brazilian ranges. The three ranges shared neither nuclear nor chloroplast haplotypes. The phylogeographic structures showed an uneven distribution of genetic diversity, sharp breaks and high levels of genetic differentiation among ranges. Our results suggest that the extant populations are descendents of at least four distinct ancestral lineages. The Atlantic ipecacs showed higher levels of genetic diversity than ipecacs from the other two ranges; it is likely that they derive from two ancestral lineages, with long‐term persistence in that region. The Amazonian ipecacs were monomorphic with respect to the ITS and cpDNA sequences, which supports the view that there was a recent expansion from a single parental source after a strong genetic bottleneck. The existence of a fourth distinct lineage is apparent from the high levels of genetic and chemical differentiation that we identified in the Central American–Columbian ipecacs.  相似文献   

7.
The administration of l-tryptophan-[3-14C] to Lupinus hartwegii (3-day-old seedlings and 8-week-old plants) resulted in the formation of gramine-[methylene-14C], indicating that gramine is produced by the same biosynthetic route in this species as in barley. Radioactive indole-3-aldehyde, labelled specifically on its aldehyde carbon, was isolated from the 8-week-old plants. However no significant amount of this compound was detected in 7-day-old seedlings, and it is suggested that indole-3-aldehyde is formed by the metabolism of gramine in the maturing plant.  相似文献   

8.
以[8-14C]标记的腺嘌呤和黄嘌呤为底物,对两种可以合成少量咖啡碱和茶叶碱的木荷属和柃木属植物(Schima mertensiana,Eurya japonica)叶片的嘌呤代谢进行了检测研究。发现木荷属和柃木属植物中嘌呤代谢相似,14C标记的腺嘌呤可以整合到嘌呤核苷酸、RNA、酰脲(包括尿囊素和尿囊酸)、二氧化碳中。经过24 h培养,在叶片吸收的放射能中,仅有6%~7%用于甲基黄嘌呤类化合物的合成(3-甲基黄嘌呤、7-甲基黄嘌呤核苷、7-甲基黄嘌呤、茶叶碱)。和其他植物一样,绝大多数14C标记的黄嘌呤整合到嘌呤的分解代谢物中(二氧化碳和酰脲),少量的放射能分布在3-甲基黄嘌呤及茶叶碱中。根据结果可以推断木荷属和柃木属植物具有N-甲基转移酶活性,可以用来合成咖啡碱和茶叶碱,相对于茶树而言,活性不高。综上,本文对木荷属和柃木属植物的嘌呤代谢以及嘌呤碱合成进行了研究。  相似文献   

9.
We have studied the purine alkaloid content and purine metabolism in Theobroma cacao fruits at differing growth stages: Stage A (young small fruit, fresh weight, ca. 2 g); stage B (medium size fruit, fresh weight, ca. 100 g) and stage C (large size, fresh weight, ca. 500 g). The major purine alkaloid in stage A fruits (mainly pericarp) was theobromine (0.7 micromol g(-1) fresh weight), followed by caffeine (0.09 micromol g(-1) fresh weight). The theobromine content of the pericarp decreased sharply with tissue age, and the caffeine content decreased gradually. A large amount of theobromine (22 micromol g(-1) fresh weight) had accumulated in seeds (mainly cotyledons) of stage C fruits. Theobromine was found also in the seed coat and placenta. Tracer experiments with [8-(14)C]adenine show that the major sites of theobromine synthesis are the young pericarp and cotyledons of T. cacao fruits. Limited amounts of purine alkaloids may be transported from the pericarp to seed tissue, but most purine alkaloids that accumulated in seeds appeared to be synthesised in cotyledons. Degradation of [8-(14)C]theobromine and [8-(14)C]caffeine to CO2 via 3-methylxanthine and ureides (allantoin and allantoic acid) was detected only in the pericarp of stage C fruits.  相似文献   

10.
Anatomical alterations in the root-shoot junction followinghypoxic conditions were studied in young wheat plants (Triticumaestivum L. cv. Hatri) grown in nutrient solution flushed withair or nitrogen gas. The root-shoot junction was characterizedby densely packed tissues with only small intercellular spaces.Seven days of hypoxia did not alter the anatomy of this region,suggesting that it does not constitute an important pathwayfor oxygen diffusion from aerial shoot to the aerenchymatousroots. A likely alternative path for oxygen movement is thegas-filled interspace between coleoptile and shoot base. Rootsemerging from more apical parts of the stem elongated more quicklyin hypoxic conditions than those from more basal parts. Thiswas related to the path length from the main point of entryof atmospheric oxygen into the plant. Additionally, oxygen shortagein the ambient root medium decreased the number of mitoses perroot tip, as determined by the Feulgen method. This effect wasmost severe in the basally inserted roots, that are presumedto be the most oxygen deficient. Triticum aestivum L. cv. Hatri, wheat, hypoxia, root-shoot junction, anatomy, internal oxygen transport, root tip, mitosis  相似文献   

11.
The high-affinity cyclic adenosine monophosphate (cAMP) phosphodiesterase MoPdeH is important not only for cAMP signalling and pathogenicity, but also for cell wall integrity (CWI) maintenance in the rice blast fungus Magnaporthe oryzae. To explore the underlying mechanism, we identified MoImd4 as an inosine-5′-monophosphate dehydrogenase (IMPDH) homologue that interacts with MoPdeH. Targeted deletion of MoIMD4 resulted in reduced de novo purine biosynthesis and growth, as well as attenuated pathogenicity, which were suppressed by exogenous xanthosine monophosphate (XMP). Treatment with mycophenolic acid (MPA), which specifically inhibits MoImd4 activity, resulted in reduced growth and virulence attenuation. Intriguingly, further analysis showed that MoImd4 promotes the phosphodiesterase activity of MoPdeH, thereby decreasing intracellular cAMP levels, and MoPdeH also promotes the IMPDH activity of MoImd4. Our studies revealed the presence of a novel crosstalk between cAMP regulation and purine biosynthesis in M. oryzae, and indicated that such a link is also important in the pathogenesis of M. oryzae.  相似文献   

12.
Veratrum plants accumulate verazine as the major alkaloid in the rhizome during the dormant stage 4 months after cold treatment. The quantitative c  相似文献   

13.
Possible biosynthetic pathways of N-acyldopamines in rat tissues were compared. It was shown that an insignificant amount of the conjugation products was formed during the incubation of arachidonic acid and dopamine, whereas the substitution of tyrosine for dopamine resulted in the productive biosynthesis of N-arachidonoyldopamine. The biosynthesis presumably involves several closely conjugated enzymatic stages, and free fatty acids rather than their CoA esters served as the starting substrates. The decarboxylation stage probably precedes the stage of catechol system formation, because N-acetyltyramine (a probable intermediate) was easily oxidized by monophenol monooxygenase to N-acyldopamine, whereas N-acyltyrosine is hydrolyzed under these conditions. Biosynthesis of N-acyldopamines in a cell-free medium was accompanied by their methylation. The possibility of oxidative metabolism of N-acyldopamines, which could serve as co-substrates or inhibitors of different oxidoreductases, was shown for the first time.  相似文献   

14.
Isotope feeding and inhibitor experiments were performed in order to elucidate the pathway common to polyamine and alkaloid biosynthesis in root cultures of Senecio vulgaris L. -Difluoromethylarginine, a specific inhibitor of arginine decarboxylase, prevented completely the incorporation of radioactivity from [14C]arginine and [14C]ornithine into spermidine and the pyrrolizidine alkaloid senecionine N-oxide. In contrast, -difluoromethylornithine, a specific ornithine-decarboxylase inhibitor, had no effect on the flow of radioactivity from labelled ornithine and arginine into polyamines and alkaloids. Thus, putrescine, the common precursor of polyamines and pyrrolizidine alkaloids, is exclusively derived via the arginine-agmatine route. Ornithine is rapidly transformed into arginine. Recycling of the guanido moiety of agmatine back to ornithine can be excluded. Putrescine and spermidine were found to be reversibly interconvertable and to excist in a highly dynamic state. In contrast, senecionine N-oxide did not show any turnover but accumulated as a stable metabolic product. In-vivo evidence is presented that the carbon flow from arginine into the polyamine/alkaloid pathway may be controlled by spermidine. The possible importance of the metabolic coupling of pyrrolizidine-alkaloid biosynthesis to polyamine metabolism is discussed.Abbreviations DFMA D,l--difluoromethylarginine - DFMO D,l--difluoromethylornithine - FW fresh weight  相似文献   

15.
Frölich C  Hartmann T  Ober D 《Phytochemistry》2006,67(14):1493-1502
Phalaenopsis hybrids contain two 1,2-saturated pyrrolizidine monoesters, T-phalaenopsine (necine base trachelanthamidine) and its stereoisomer Is-phalaenopsine (necine base isoretronecanol). T-Phalaenopsine is the major alkaloid accounting for more than 90% of total alkaloid. About equal amounts of alkaloid were genuinely present as free base and its N-oxide. The structures were confirmed by GC-MS. The quantitative distribution of phalaenopsine in various organs and tissues of vegetative rosette plants and flowering plants revealed alkaloid in all tissues. The highest concentrations were found in young and developing tissues (e.g., root tips and young leaves), peripheral tissues (e.g., of flower stalks) and reproductive organs (flower buds and flowers). Within flowers, parts that usually attract insect visitors (e.g., labellum with colorful crests as well as column and pollinia) show the highest alkaloid levels. Tracer feeding experiments with (14)C-labeled putrecine revealed that in rosette plants the aerial roots were the sites of phalaenopsine biosynthesis. However active biosynthesis was only observed in roots still attached to the plant but not in excised roots. There is a slow but substantial translocation of newly synthesized alkaloid from the roots to other plant organs. A long-term tracer experiment revealed that phalaenopsine shows neither turnover nor degradation. The results are discussed in the context of a polyphyletic molecular origin of the biosynthetic pathways of pyrrolizidine alkaloids in various scattered angiosperm taxa. The ecological role of the so called non-toxic 1,2-saturated pyrrolizidine alkaloids is discussed in comparison to the pro-toxic 1,2-unsaturated pyrrolizidine alkaloids. Evidence from the plant-insect interphase is presented indicating a substantial role of the 1,2-saturated alkaloids in plant and insect defense.  相似文献   

16.
Growth characteristics, oxygen exchange, and carbohydrate and chlorophyll contents were determined 30 days after subculturing of single node-derived plantlets of Solanum tuberosum cv Haig cultivated in vitro. Cultivation conditions were: (a) photomixotrophy in closed vessel, (b) photomixotrophy in closed vessel on medium supplemented with silver thiosulfate, (c) photomixotrophy in aerated vessel, (d) photoautotrophy in air, (e) photoautotrophy in CO2-enriched air. In photomixotrophic conditions, aeration of the vessel enhanced sucrose utilization and had a positive effect on plantlet growth. In photoautotrophic conditions, growth of the plantlets was slow in air and was strongly enhanced by CO2 enrichment of the atmosphere. Starch to sucrose ratios were higher in plants grown photoautotrophically than in plants grown with sucrose in the medium. Oxygen exchange characteristics on a chlorophyll basis were similar between the plantlets when measured under moderate light, and resembled those of greenhouse plant leaves. In high light, however, plantlets grown photoautotrophically in a CO2-enriched atmosphere had higher oxygen exchange rates. We concluded from these results that potato plantlets in vitro in conditions (c), (d), and (e) developed C3-plant photosynthetic characteristics, which were in photoautotrophically grown plantlets comparable to those of field-grown plants.  相似文献   

17.
On the basis of the ratio (cell’s respiration rate/maximum oxygen demand of cells, ra b/KrM) as a new criterion of oxygen supply, symptoms of oxygen deficiency was described in inosine fermentation. Conversions of the products were observed to occur in relation to the extent of oxygen deficiency. When oxygen demand of the cells was satisfied (ra b/KrM = 1.0), the cells accumulated exclusively inosine. Under limited oxygen supply at the value of ra b/KrM 0.5~0.9, on the other hand, inosine formation was inhibited and acetoin was the predominant product. When oxygen supply was limited more strictly at the value of ra b/KrM smaller than 0.3, the cells excreted 2,3-butyleneglycol as the main product.  相似文献   

18.
In contrast to previous reports that vincoside was the sole precursor for indole alkaloids in Vinca rosea, the 3α epimer strictosidine has been incorporated into tetrahydroalstonine, ajmalicine, catharanthine and vindoline; the anomalous 3β to 3α inversion is no longer required.  相似文献   

19.
Potato plants contain calystegines in leaves, stems, flowers, fruits and roots. Calystegines A3 and B2 are the main constituents. Highest concentrations were measured in sprouts emerging from the tubers. In 3 mm long sprouts, 3.3 mg total calystegines per g fresh mass were detected. Dormant tubers directly after harvest contain less calystegines in all parts than sprouting tubers. Flowers and young leaves are the aerial plant tissues with the highest calystegine concentration, i.e. 150 μg total calystegines per g fresh mass. Calystegine levels did not rise when sprouts were wounded. Tropinone application to sprouts and aerial tissues lead to an accumulation of pseudotropine and not to tropine. That indicates that stereospecific tropinone reduction is active in potato.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号