首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antibiotic kanamycin was degraded with methanolic hydrogen chloride and was determined to be composed of three compounds: deoxystreptamine, 6-amino-6-deoxy-d-glucopyranose and 3-amino-3-deoxy-d-glucopyranose. From the chemical and physical data on the antibiotic and its fragments, kanamycin was shown to be O-α-6-amino-6-deoxy-d-glucopyranosyl-(1→4 or 6)-O-[α-3-amino-3-deoxy-d-glucopyranosyl-(1→6 or 4)]-1,3-diamino-1, 2, 3-trideoxy-myo-inositol.  相似文献   

2.
The condensation reaction of 3-acetamido-2,4,6-tri-O-benzyl-3-deoxy-α-d-glucopyranosyl chloride, 6-acetamido-2,3,4-tri-O-benzyl-6-deoxy-d-glucopyranosyl chloride and 2,3,4,6-tetra-O-benzyl-α-d-glucopyranosyl chloride were performed by a modified Königs-Knorr method. The rapid conversion of the benzyl halogeno derivative of 3-acetamido-3-deoxy-d-glucose to a stable intermediate caused a poor yield in the glucoside formation with complex aglycons at the presence of dioxane. For the benzyl halogeno derivative of 6-acetamido-6-deoxy-d-glucose, the C-6 acetamido group was favorable to the α-glucoside formation by its anchimeric assistance. A favorable effect of dioxane was observed for the α-glucoside formation of benzyl halogeno derivative of d-glucose.  相似文献   

3.
Partial acid hydrolysis of asterosaponin A, a steroidal saponin, afforded two new disaccharides in addition to O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose which has been characterized in the preceding paper. The formers were demonstrated as O-(6-deoxy-α-d-galactopyranosyl)-(1→4)-6-deoxy-d-glucose and O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-6-deoxy-d-galactose, respectively.

Accordingly, the structure of carbohydrate moiety being composed of two moles each of 6-deoxy-d-galactose and 6-deoxy-d-glucose, was established as O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose, which is attached to the steroidal aglycone through an O-acetal glycosidic linkage.  相似文献   

4.
ABSTRACT

Maltose phosphorylase (MP), a glycoside hydrolase family 65 enzyme, reversibly phosphorolyzes maltose. In this study, we characterized Bacillus sp. AHU2001 MP (MalE) that was produced in Escherichia coli. The enzyme exhibited phosphorolytic activity to maltose, but not to other α-linked glucobioses and maltotriose. The optimum pH and temperature of MalE for maltose-phosphorolysis were 8.1 and 45°C, respectively. MalE was stable at a pH range of 4.5–10.4 and at ≤40°C. The phosphorolysis of maltose by MalE obeyed the sequential Bi–Bi mechanism. In reverse phosphorolysis, MalE utilized d-glucose, 1,5-anhydro-d-glucitol, methyl α-d-glucoside, 2-deoxy-d-glucose, d-mannose, d-glucosamine, N-acetyl-d-glucosamine, kojibiose, 3-deoxy-d-glucose, d-allose, 6-deoxy-d-glucose, d-xylose, d-lyxose, l-fucose, and l-sorbose as acceptors. The kcat(app)/Km(app) value for d-glucosamine and 6-deoxy-d-glucose was comparable to that for d-glucose, and that for other acceptors was 0.23–12% of that for d-glucose. MalE synthesized α-(1→3)-glucosides through reverse phosphorolysis with 2-deoxy-d-glucose and l-sorbose, and synthesized α-(1→4)-glucosides in the reaction with other tested acceptors.  相似文献   

5.
The transglucosylation reaction of buckwheat α-glucosidase was examined under the coexistence of 2-deoxy-d-glucose and maltose. As the transglucosylation products, two kinds of new disaccharide were chromatographically isolated in a crystalline form (hemihydrate). It was confirmed that these disaccharides were 3-O-α-d-glucopyranosyl-2-deoxy-d-glucose ([α]d + 132°, mp 130 ~ 132°C, mp of ±-heptaacetate 151 ~ 152°C) and 4-O-±-d-glucopyranosyl-2-deoxy-d-glucose ([±]d + 136°, mp 168 ~ 170°C), respectively. The principal product formed in the enzyme reaction was 3-O-±-d-glucopyranosyl-2-deoxy-d-glucose.  相似文献   

6.
Mucopolysaccharides were isolated from both human and cow colostrums. Each of the fractionated mucopolysaccharides was considered to be homogeneous from behaviors in chromatography, electrophoresis and sedimentation pattern. The fractions isolated from human colostrum were found to contain 51.0~78.3% carbohydrates consisting of d-galactose, 2-amino-2-deoxy-d-glucose, N-acetylneuraminic acid, l-fucose and d-glucose, and 31.6~11.0% peptides consisting of 16 kinds of amino acids. The sedimentation constants, s20, w, of these fractions were in the range of 0.75 to 1.73 S. The fraction isolated from cow colostrum was found to contain 19.3% carbohydrates consisting of d-galactose, 2-amino-2-deoxy-d-glucose and N-acetylneuraminic acid, and 65.2% peptides or proteins consisting of 18 kinds of amino acids. The sedimentation constant, s20, w, of the fraction was 3.68 S.  相似文献   

7.
Acid hydrolysis of asterosaponin A afforded a crystalline 6-deoxyglucobiose, whose structure has been established as O-(6-deoxy-α-d-glucopyranosyl)-(1→4)-6-deoxy-d-glucose. This is the first isolation of a 6-deoxyglucobiose. Its formation as a hydrolytic fragment of asterosaponin A suggests the presence of an α-1→4′-glycosidic linkage between the two 6-deoxy-d-glucose units in the saponin.  相似文献   

8.
An efficient method for the stereoselective synthesis of 2-amino-2-deoxy-d-arabinose and 2-deoxy-d-ribose is described.

The key step in this method was accomplished by the nucleophilic addition of methyl isocyanoacetate to 2,3-O-isopropylidene-d-glyceraldehyde with high erythro-selectivity (nearly 100%).

Subsequent intermolecular cyclization predominantly gave the desired oxazoline derivative (trans-form), in which two new chiral centers were formed. The oxazoline derivative was efficiently converted to both 2-amino-2-deoxy-d-arabinose and 2-deoxy-d-ribose.  相似文献   

9.
This paper deals with the partial correction of our previous paper and with some new results in regard to ammonolysis of the epoxide ring of 2,3-anhydroribofuranoside derivatives.

Treatment of methyl 2,3-anhydro-5-deoxy-α-d-ribofuranoside, prepared from d-xylose, with ammonia gave methyl 2-amino-2,5-dideoxy-α-d-arabinoside and no methyl 3-amino-3,5-dideoxy-α-d-xyloside which we reported to obtain previously.

The exclusive attack of the nucleophilic reagent at C-2 is inconsistent with a result of C. D. Anderson et al. in regard to ammonolysis of methyl 2,3-anhydro-α-d-ribofuranoside.

In contrast to α-anomer, methyl 2,3-anhydro-5-deoxy-β-d-ribofuranoside gave mainly methyl 3-amino-3,5-dideoxy-β-d-xyloside. The difference of ammonolysis products between α- and β-anomer will be due to existence of steric hindrance.  相似文献   

10.
Radiolysis of some monosaccharides (fructose, glucose and ribose) in air-free condition was markedly enhanced by the addition of formate at concentrations above 20 mm, while it was inhibited at concentrations below 20 mm. The following compounds were detected in the irradiated sugar solutions containing excess formate (100mm): 1-Deoxy-d-arabinohexulose (1, G=4.4) and 1,3- dideoxy-d-erythrohexulose (2, G= 1.3) from fructose; 2-deoxy-d-ribose (3, G=2.3) and 2-deoxyribitol (4, G =0.6) from ribose; and 2-deoxy-d-glucose (5, G=0.5) and 2-deoxy-d-glucitol (6, G=0.4) from glucose. A mechanism for radiolytic formation of the products was proposed, based on interaction of - formed from formate with sugars.  相似文献   

11.
The cepA putative gene encoding a cellobiose phosphorylase of Thermotoga maritima MSB8 was cloned, expressed in Escherichia coli BL21-codonplus-RIL and characterized in detail. The maximal enzyme activity was observed at pH 6.2 and 80°C. The energy of activation was 74 kJ/mol. The enzyme was stable for 30 min at 70°C in the pH range of 6-8. The enzyme phosphorolyzed cellobiose in an random-ordered bi bi mechanism with the random binding of cellobiose and phosphate followed by the ordered release of D-glucose and α-D-glucose-1-phosphate. The K m for cellobiose and phosphate were 0.29 and 0.15 mM respectively, and the k cat was 5.4 s-1. In the synthetic reaction, D-glucose, D-mannose, 2-deoxy-D-glucose, D-glucosamine, D-xylose, and 6-deoxy-D-glucose were found to act as glucosyl acceptors. Methyl-β-D-glucoside also acted as a substrate for the enzyme and is reported here for the first time as a substrate for cellobiose phosphorylases. D-Xylose had the highest (40 s-1) k cat followed by 6-deoxy-D-glucose (17 s-1) and 2-deoxy-D-glucose (16 s-1). The natural substrate, D-glucose with the k cat of 8.0 s-1 had the highest (1.1×104 M-1 s-1) k cat/K m compared with other glucosyl acceptors. D-Glucose, a substrate of cellobiose phosphorylase, acted as a competitive inhibitor of the other substrate, α-D-glucose-1-phosphate, at higher concentrations.  相似文献   

12.
The structure of an acidic polysaccharide elaborated by Bacillus polymyxa S-4 was investigated in relation to its physiological activity, particularly, its hypocholesterolemic effect on experimental animals. The polysaccharide is composed of d-glucose, d-mannose, d-galactose, d-glucuronic acid, and d-mannuronic acid (molar ratio 3:3:1: 2:1). Methylation and fragmentation analyses, such as Smith degradation and partial acid hydrolysis showed that the polysaccharide has a complicated, highly branched structure, consisting mainly of (1 → 3)- and (1 → 4)-d-glycosidic linkages. The backbone chain containing d-glucuronic acid, d-mannose, and d-galactose residues is attached at the C-3, C-4, and C-4 positions, respectively, with side chains of single or a few carbohydrate units, which are terminated with d-glucose or d-mannose residues.  相似文献   

13.
Methylation analysis of five fractions of the dextran elaborated by Leuconostoc mesenteroides NRRL B-1299 has shown that each fraction was a highly branched dextran with the branches being joined mainly through C-2. Detection of a small amount of 4-O-mono-methyl-d-glucose has suggested that parts of the d-glucose residues were doubly branched at both C-2 and C-3. Detection of a larger amount of 2,4,6-tri-O-methyl-d-glucose in the hydrolyzates of the methylated products of the borate insoluble fractions has shown a greater percentage of linear α-1,3-linked d-glucose residues in these fractions. It is suggested that the solubility of the dextran is closely related to the content of linear α-1,3-linked d-glucose residues.  相似文献   

14.
Deoxy derivatives of p-nitrophenyl (PNP) α-d-mannopyranoside, PNP 2-deoxy-α-d-arabino-hexopyranoside, 3-deoxy-α-d-arabino-hexopyranoside, 4-deoxy-α-d-lyxo-hexopyranoside, and α-d-rhamnopyranoside, were synthesized and hydrolytic activities of jack bean and almond α-mannosidases against them were investigated. These α-mannosidases scarcely acted on the 2-, 3-, and 4-deoxy derivatives, while the 6-deoxy one was hydrolyzed by the enzymes as fast as PNP α-d-mannopyranoside, which is a common substrate for α-mannosidase. These results indicate that the hydroxyl groups at C-2, 3, and 4 of the mannopyranoside are necessary to be recognized as a substrate by these enzymes, while that at C-6 does not have so a crucial role in substrate discrimination. Values of Km and Vmax of the enzymes on the hydrolysis of PNP α-d-rhamnopyranoside were obtained from kinetic studies.  相似文献   

15.
In connection with the behavior on hydrolysis of mucopolysaccharides, acid hydrolysis of methyl d-glucopyranosides, methyl 2-amino-2-deoxy-d-glucopyranosides (hydrochlorides as well as N-substituted derivatives), and methyl d-glucuronides was carried out. The difference in hydrolysis rate of methyl 2-amino-2-deoxy-d-glucopyranosides was ascribable to that of the substituents on the amino group, whereas hydrolysis rate of methyl d-glucuronides was dependent on their ring structures. The possible behaviors in acid hydrolysis of glycosidic linkages in mucopolysaccharides are discussed.  相似文献   

16.
d-Glucose-isomerizing enzyme has been extracted in high yield from d-xylose-grown cells of Bacillus coagulans, strain HN-68, by treating with lysozyme, and purified approximately 60-fold by manganese sulfate treatment, fractionation with ammonium sulfate and chromatography on DEAE-Sephadex column. The purified d-glucose-isomerizing enzyme was homogeneous in polyacrylamide gel electrophoresis and ultracentrifugation and was free from d-glucose-6-phosphate isomerase. Optimum pH and temperature for activity were found to be pH 7.0 and 75°C, respectively. The enzyme required specifically Co++ with suitable concentration for maximal activity being 10?3 m. In the presence of Co++, enzyme activity was inhibited strongly by Cu++, Zn++, Ni++, Mn++ or Ca++. At reaction equilibrium, the ratio of d-fructose to d-glucose was approximately 1.0. The enzyme catalyzed the isomerization of d-glucose, d-xylose and d-ribose. Apparent Michaelis constants for d-glucose and d-xylose were 9×10?2 m and 7.7×10?2 m, respectively.  相似文献   

17.
The cell wall polysaccharide of cotyledon of Tora-bean (Phaseolus vulgaris), which surrounds starch granules, was isolated from saline-extraction residues of homogenized cotyledon, as alkali-insoluble fibrous substance. Alkali-insoluble residue, which had been treated with α-amylase (Termamyl), had a cellulose-like matrix under the electron microscope. It was composed of l-arabinose, d-xylose, d-galactose and d-glucose (molar ratio, 1.0: 0.2: 0.1: 1.2) together with a trace amount of l-fucose. Methylation followed by hydrolysis of the polysaccharide yielded 2, 3, 5-tri-O-methyl-l-arabinose (3.3 mol), 2, 3, 4-tri-O-methyl-d-xylose (1.0 mol), 2, 3-di-O-methyl-l-arabinose (3.7 mol), 3, 4-di-O-methyl-d-xylose (1.0 mol), 2-O-methyl-l-arabinose and 2, 3, 6-tri-O-methyl-d-glucose (12.7 mol), 2, 6-di-O-methyl-d-glucose (1.2 mol) and 2, 3-di-O-methyl-d-glucose (1.0 mol).

Methylation analysis, Smith degradation and enzymatic fragmentation with cellulase and α-l-arabinofuranosidase showed that the l-arabinose-rich alkali-insoluble polysaccharide possesses a unique structural feature, consisting of β-(1 → 4)-linked glucan backbone, which was attached with side chains of d-xylose residue and β-d-galactoxylose residue at O-6 positions and α-(1 → 5)-linked l-arabinosyl side cains (DP=8) at O-3 positions of β-(1 → 4)-linked d-glucose residues, respectively.  相似文献   

18.
A bacterial strain, HN-500, having an activity of d-glucose isomerization was newly isolated from soil, and was identified to be similar to Escherichia intermedia (Werkman and Gillen) Vaughn and Levine. The strain, grown on wide varieties of carbon sources, shows definitely d-glucose isomerizing activity in the presence of arsenate. d-Fructose formed in reaction mixture was identified by paper chromatography and was isolated in crystalline form from calcium-fructose complex. In order to increase the production of d-glucose isomerase, d-glucose and ammonium nitrogen were effective carbon and nitrogen sources, respectively, but none of the metallic ions tested were effective, furthermore manganese, ferrous and ferric ions present mOre than 10-5m in growth medium fully repressed the enzyme formation. The cells grown on carbon sources other than d-xylose showed no activity of d-xylose isomerase.  相似文献   

19.
Pyrrolothiazolate formed by the Maillard reaction between l-cysteine and d-glucose has a pyrrolothiazole skeleton as a chromophore. We searched for a Maillard pigment having a pyrrolooxazole skeleton formed from l-threonine or l-serine instead of l-cysteine in the presence of d-glucose. As a result, two novel yellow pigments, named pyrrolooxazolates A and B, were isolated from model solutions of the Maillard reaction containing l-threonine and d-glucose, and l-serine and d-glucose, respectively, and identified as (2R,3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-2,5,7a-trimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid and (3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-5,7a-dimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid by instrumental analyses. These compounds were pyrrolooxazole derivatives carrying a carboxy group, and showed the absorption maxima at 300–360 nm under acidic and neutral conditions and at 320–390 nm under alkaline conditions.  相似文献   

20.
The yeast hexokinase is highly specific for α-isomer of d-glucose. The relative rate of phosphorylation of β-d-glucose, catalyzed by the purified yeast hexokinase, is observed to be 60~70 (α-d-glucose=100). The average Michaelis constants of yeast hexokinase are found to be 1.8 × 10?4 and 2.4 × 10?4 for α-d-glucose and (β-d-glucose respectively, therefore the difference between the two constants is considered to be negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号