首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of poly(N-methyl-L -alanine) and poly (N-methyl-DL -alanine) are described. The polymers were examined by 220 MHz high-resolution nuclear magnetic resonance (nmr) and circular dichroism (CD). The results demonstrate that poly(N-methyl-L -alanine) exists as an ordered helical structure with all the amide bonds in the trans configuration in appropriate solvents. As trifluoroacetic acid (TFA) is added to the solutions of the polymer in helix-supporting solvents, resonances corresponding to both trans and cis amide conformations of N-methyl, C-methyl, and α-CH are observed. The presence of both the trans and the cis peptide bonds in a polymer chain disrupts the ordered structures. Our conclusions from CD data are in agreement with the nmr results. Ultracentrifugation shows that degradation of the polymer chain does not occur during the TFA treatment.  相似文献   

2.
The absolute configurations of the enantiomers of the opiod picenadol [cis-1,3-dimethyl-4-propyl-4-propyl-4-(3-hydroxyphenyl)piperidine; cis-3-methyl, 4-propyl] have been determined by an X-ray crystallographic study of the chloride salt of the (+)-enantiomer. The agonist (+)-enantiomer and the antagonist (?)-enantiomer were found to have the 3R, 4R and 3S, 4S absolute configurations, respectively. The conformational properties of the enantiomers were also examined with MM2–87 calculations. There was good agreement between the computed global minimum and the crystallographic structure with the phenyl ring approximately bisecting the piperidine ring by both methods. This orientation of the phenyl ring differs from that of related opioids such as the phenylmorphans, prodines, meperidine, and ketobemidone in which the phenyl ring tends to eclipse one edge of the piperidine ring. Because the phenyl ring bisects the piperidine ring in picenadol, there is little difference in the three-dimensional orientations of the phenyl rings of the two enantiomers when one superimposes the piperidine rings. The agonist (+)-enantiomer is ambiguous with respect to an opioid ligand model, which suggests that agonist activity requires a specific range of dihedral angles for the phenyl ring. While the global minimum of the agonist is not consistent with the model, a second conformer that is only 1.2 kcal/mol above the global minimum is consistent. An alternative explanation is that agonist or antagonist activity is solely due to the presence of the 3-methyl group on the different edges of the piperidine ring. MM2–87 calculations were also performed on the opioid agonist des-3-methyl analog of picenadol and the closely related trans-1,3,4-trimethyl-4-(3-hydroxyphenyl)piperidines (trans-3-methyl, 4-methyl) in which both enantiomers are opioid antagonists. The conformational properties of these compounds are consistent with the ligand model. © 1995 Wiley-Liss, Inc.  相似文献   

3.
A novel synthesis of ( ± )-methyl epijasomonate (2) and the first synthesis of ( ± )-methyl cucurbate (4) were achieved starting from 2-allylcyclohexane-1,3-dione (8). The synthetic epimer 2 had a stronger jasmin flavor than the trans-isomer 1 with 95% purity.  相似文献   

4.
The induction of freezing tolerance in bromegrass (Bromus inermis Leyss) cell culture was used to investigate the activity of absisic acid (ABA) analogs. Analogs were either part of an array of 32 derived from systematic alterations to four regions of the ABA molecule or related, pure optical isomers. Alterations were made to the functional group at C-1 (acid replaced with methyl ester, aldehyde, or alcohol), the configuration at C-2, C-3 (cis double bond replaced with trans double bond), the bond order at C-4, C-5 (trans double bond replaced with a triple bond), and ring saturation (C-2′, C-3′ double bond replaced with a single bond so that the C-2′ methyl and side chain were cis). All deviations in structure from ABA reduced activity. A cis C-2, C-3 double bond was the only substituent absolutely required for activity. Overall, acids and esters were more active than aldehydes and alcohols, cyclohexenones were more active than cyclohexanones, and dienoic and acetylenic analogs were equally active. The activity associated with any one substituent was, however, markedly influenced by the presence of other substituents. cis, trans analogs were more active than their corresponding acetylenic analogs unless the C-1 was an ester. Cyclohexenones were more active than cyclohexanones regardless of oxidation level at C-1. An acetylenic side chain decreased the activity of cyclohexenones but increased the activity of cyclohexanones relative to their cis, trans counterparts. Trends suggested that for activity the configuration at C-1′ has to be the same as in (S)-ABA, in dihydro analogs the C-2′-methyl and the side chain must be cis, small positional changes of the 7′-methyl are tolerable, and the C-1 has to be at the acid oxidation level.  相似文献   

5.
As a simplified model of natural pyrethrins, trans-2,5-hexadien-l-yl chrysanthemate (V), and its 2- or 3-methyl substituted homologues (III and IV), were prepared and tested for insecticidal activities against houseflies. All these compounds retained sufficient insect toxicity to illustrate an interesting relationships between chemical structure and insecticidal activity.

The cis isomer (XII) of compound V and two positional isomers, 2-methylene-4-penten-l-yl and 1,5-hexadien-3-yl chrysanthemates (XIII and XIV), were also synthesized. Of these isomers, XIII was very slightly active, but the other isomers (XII and XIV) were completely ineffective.

On the other hand, the insecticidal activity of 5-hexen-2-yn-l-yl ester (XV), en-yne analogue of V, was almost the same as that of V.  相似文献   

6.
Abstract

Reaction of (±)but-3-en-1,2-diol (3) with ethyl diazoacetate afforded two cyclopropyl compounds (5) and (6). Their relative trans stereochemistry at C-2 and C-3 has been determined by high-field and computational NMR spectroscopy. (±)Trans-1-(1′,5′-dihydroxy-3′,4′-methylenyl-pent-2′-oxy)methyl]thymine (1d) or -cytosine (1b) and (±)trans-9-(1′,5′-dihydroxy-3′,4′-methylenylpent-2′-oxy)-methyl]adenine (la) or -guanine (1c) have been obtained through a regiospecific alkylation procedure and their antiviral evaluation is reported.  相似文献   

7.
The triphenylethylene antiestrogen trans-tamoxifen is an effective antitumor agent used in the treatment of human breast cancer. While the antiestrogenic activity of trans-tamoxifen clearly plays an important role in its tumoricidal action, some of the biological effects of trans-tamoxifen are independent of estrogen. Therapeutic concentrations of trans-tamoxifen inhibit protein kinase C (PKC) and calmodulin-dependent enzymes. PKC and calmodulin play critical roles in growth regulation, and there is evidence that inhibition of PKC and calmodulin by trans-tamoxifen may contribute to the antiumor activity of the drug in vivo. The geometric isomers cis- and trans-tamoxifen have a number of opposing biological activities that have been attributed to their interactions with the estrogen receptor, Cis-tamoxifen is generally estrogenic, whereas trans-tamoxifen is generally antiestrogenic. In this report, we compared the effects of cis- and trans-tamoxifen on PKC activity and on calmodulin-dependent cAMP phosphodiesterase activity. Cis- and trans-tamoxifen inhibited the Ca2+- and phosphatidylserine- (PS-) dependent activity of purified rat brain PKC with indistinguishable potencies, but cis-tamoxifen was somewhat more potent than the trans isomer in the inhibition of the Ca2+- and PS-independent activity of PKC. In addition, cis-tamoxifen was the more potent isomer in the inhibition of T lymphocyte activation, an event that entails a PKC-requiring signal transduction pathway. A modest preference of the cis isomer was also observed in the inhibition of a calmodulin-dependent cAMP phosphodiesterase. These results suggest a congruence between triphenylethylene binding sites on PKC and on the activated calmodulin–cAMP phosphodiesterase complex. We conclude that the interactions of cis- and trans-tamoxifen with PKC and the activated calmodulin–cAMP phosphodiesterase complex offer a criterion for distinguishing biological effects of triphenylethylenes that are due to interactions with the estrogen receptor from the biological effects resulting from their inhibitory activities against PKC and calmodulin-dependent processes.  相似文献   

8.
In order to investigate the active site of inhibition of E–64 against papain, the constituents of E-64 and their derivatives were synthesized and their activities on papain were assayed. It was consequently found trans-epoxysuccinic acid was essential for the activity. The difference of its optical activity gave no influence on the activity, but cis-form had no activity. Moreover, the structure-activity relationship of a series of the esters of trans-epoxysuccinic acid was also discussed. From these results, it was suggested that both epoxide and carbonyl group are important in the manifestation of the inhibitory action.  相似文献   

9.
Five N-protected tetrapeptide esters of the structure Gly-Pro-X-X*-O-methyl were synthesized in such a way that one of the two variable amino acid residues (X) was isotopically enriched in 15N (denoted by*). The variable amino acids are glycine, alanine, leucine, valine, and phenylalanine. For the natural abundance 15N-nmr spectra of these tetrapeptide derivatives in methylene chloride only the signals of the Gly-Pro trans isomer were found. In a 2:1 mixture of acetone and dimethylsulfoxide, signals for both the cis and trans isomers were observed. Three of the five tetrapeptide derivatives show cis/trans splitting of all four nitrogen signals. The 15N-nmr spectra of Z-Pro-Pro-OH and of (D ,L -proline)n were measured in a 2:1 mixture of acetone and dimethylsulfoxide as well as in water. The effects of solvents and neighboring residues and the influence of the cis/trans isomerism on the nmr spectra are discussed. The determination of the cis/trans equilibria and the assignment of the 15N-nmr signals of all oligopeptides were achieved by selective isotopic enrichment and by means of 13C-nmr spectra.  相似文献   

10.
A series of pyrazole derivatives, which are structural analogues of the systemic fungicide, carboxin (5,6-dihydro-2-methyl-i,4-oxathiin-3-carboxani-lide), have been synthesized and their antifungal properties investigated. 3,5-dimethylpyrazole-i-carboxanilides, although active in vitro and in leaf disk tests, showed no systemic antifungal activity. Certain 3,5-dimethylpyra-zole-4-carboxanilides, however, and their corresponding 1 -methyl derivatives, showed good activity in spore germination tests and high activity against wheat and broad bean rusts in vivo. In several instances, systemic antifungal activity was of the same order as that of carboxin, although generally accompanied by higher levels of phytotoxicity. 1 -Phenyl derivatives were essentially inactive. Substitution in the anilide ring by 3-methyl, 2-methyl or 3-chloro groups resulted in enhanced systemic activity, while 4-chloro, 4-ethoxy, 2-nitro and 3,4-dichloro substituents reduced activity.  相似文献   

11.
Cytotoxicity and mutagenicity of trans,trans,trans-[PtCl2(CH3COO)2(NH3)(1-adamantylamine)] [trans-adamplatin(IV)] and its reduced analog trans-[PtCl2(NH3)(1-adamantylamine)] [trans-adamplatin(II)] were examined. In addition, the several factors underlying biological effects of these trans-platinum compounds using various biochemical methods were investigated. A notable feature of the growth inhibition studies was the remarkable circumvention of both acquired and intrinsic cisplatin resistance by the two lipophilic trans-compounds. Interestingly, trans-adamplatin(IV) was considerably less mutagenic than cisplatin. Consistent with the lipophilic character of trans-adamplatin complexes, their total accumulation in A2780 cells was considerably greater than that of cisplatin. The results also demonstrate that trans-adamplatin(II) exhibits DNA binding mode markedly different from that of ineffective transplatin. In addition, the reduced deactivation of trans-adamplatin(II) by glutathione seems to be an important determinant of the cytotoxic effects of the complexes tested in the present work. The factors associated with cytotoxic and mutagenic effects of trans-adamplatin complexes in tumor cell lines examined in the present work are likely to play a significant role in the overall antitumor activity of these complexes.  相似文献   

12.
2,4,6-Triphenyldioxane-1,3 (TPD) is a highly effective species-specific inducer of CYP2В in rats. Several analogs of TPD were synthesized to verify a hypothesis that minor changes in the inducer structure can cause changes in induction abilities (R = H, cisTPD and transTPD; R = N(CH3)2, transpDMA; R = NO2, transpNO2; R = F, transpF; R = OCH3, transpMeO). Five of six compounds were able to activate CAR in rat liver. Results of Western-blot and ChIP showed that cisTPD and transTPD, transpDMA, transpNO2, transpF treatment stimulated nuclear accumulation of CAR and evoked CAR receptor PBREM-binding activity in rat liver. cisTPD, transTPD, transpDMA, transpNO2 and transpF administration significantly increased total CYP content (1.3–2.5 fold) and the level of PROD (12–20 fold), CYP2B specific activity, whereas transpMeO did not have any effects. Western blot and real-time RT-PCR showed that the increase of PROD in liver is related to the high content of CYP2B proteins and paralleled the increase of CYP2B1 (10–43 fold) and CYP2B2 (8–26 fold) mRNAs. At the same time content of CYP2B proteins and CYP2B1 and CYP2B2 mRNA levels were unchanged in rat liver after transpMeO treatment. The dose–response studies have shown that cisTPD, transpDMA, transpF and transpNO2 have similar potency, and transTPD is less potent derivative. Moreover, it is likely transTPD act as a partial CAR activator. Thus, our results provide evidence to support the conclusion that the differences of TPD analogs ability to activate CYP2B gene expression can be explained by various interactions with CAR.  相似文献   

13.
Mixed Langmuir films of type 1 alpha-(α-) and keto-mycolic acids (MAs) were investigated to understand the roles of α-methyl trans-cyclopropane containing keto-MA in determining the physical and chemical properties of the monolayers. Surface pressure (π) vs. mean molecular area (A) isotherms were measured at constant mole fractions defined as the ratio of the keto-MA molarity to the total molarity of α-MA and keto-MA (Xketo) at 25?°C and 37?°C. A and the elastic modulus (E) of the mixed monolayer were compared for different Xketo at fixed π values. In keto-MA rich monolayers, A values were much larger than values of the combined areas of α-MA and keto-MA, while the E values were close to those of solid keto-MA monolayers. A and E were also plotted against the mole fraction of α-methyl trans-cyclopropane containing keto-MA, which showed that the α-methyl trans-cyclopropane group stabilized the W-form conformation of mycolic acids in monolayers, and rendered them solid state. Furthermore, a comparison of the experimental results and the α-methyl trans-cyclopropane content in cell-wall MAs from various strains indicated that the ratio of trans-cyclopropane content was important in determining the nature of the mixed MA layer.  相似文献   

14.
Peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8), a class of enzymes that catalyse the rate-limiting step of the cis/trans isomerization in protein folding, are divided into three structurally unrelated families: cyclophilins, FK506-binding proteins (FKBPs), and parvulins. Two recombinant FKBPs from the soil nitrogen-fixing bacterium Azotobacter vinelandii, designated as AvfkbX and AvfkbB, have been purified and their peptidyl-prolyl cis/trans isomerase activity against Suc-Ala-Xaa-Pro-Phe-pNA synthetic peptides characterised. The substrate specificity of both enzymes is typical for bacterial FKBPs, with Suc-Ala-Phe-Pro-Phe-pNA being the most rapidly catalysed substrate by AvfkbX and Suc-Ala-Leu-Pro-Phe-pNA by AvfkbB. Both FKBPs display chaperone activity as well in the citrate synthase thermal aggregation assay. Furthermore, using real-time RT-qPCR, we demonstrated that both genes were expressed during the exponential growth phase on glucose minimal medium, while their expression declined dramatically during the stationary growth phase as well as when the growth medium was supplied exogenously with ammonium.  相似文献   

15.
Several oxidizing agents were examined for their ability to demethylthiolate adenosine- and cytidine 5′-S-methyl phosphorothiolates.

Iodine dissolved in an aqueous potassium iodide solution or in dimethyl sulfoxide (DMSO) was the most effective demethylthiolating agent of those tested in the present study, rapidly giving the demethylthiolated products in quantitative yields. The iodine-DMSO solution demethyl-thiolated the ribonucleoside 5′-S-methyl phosphorothiolates to give ribonucleoside 5′-monophosphates even under anhydrous conditions, DMSO acting as an oxygen donor in this reaction.

Hydrogen peroxide has high demethylthiolating ability in spite of its low reaction rate. Isoamyl nitrite, an effective demethylthiolating agent for O-alkyl S-methyl phosphorothiolates, was not effective for the demethylthiolation of ribonucleoside 5′-S-methyl phosphorothiolates, because the unprotected amino groups of the S-methyl nucleotides were attacked by the reagent to give deaminated products. N-Chlorosuccinimide had no effect on the demethylthiolation of S-methyl phosphorothiolates.  相似文献   

16.
UsingS-adenosyl-L-[Me-14C] methionine, rat cerebral cortex methyltransferase activity was determined during the early postnatal period in the absence of addedEscherichia coli tRNA and in its presence. [Me-14C] tRNA was purified from both systems and its [Me-14C] base composition determined. The endogenous formation of [Me-14C] tRNA (homologous tRNA methylation) was totally abolished in the presence of 2.5 mM spermidine, whereasE. coli B tRNA methylation (heterologous methylation) was markedly stimulated. Only [Me-14C] 1-methyl guanine and [Me-14C]N 2-methyl guanine were formed by homologous methylation, there being an inverse shift in their relative proportions with age. Heterologous tRNA methylation led, additionally, to the formation of [Me-14C]N 2 2 -dimethyl guanine, 5-methyl cytosine, 1-methyl adenine, 5-methyl uracil, 2-methyl adenine, and 1-methyl hypoxanthine. A comparison of heterologous tRNA methylation between the whole brain cortex (containing nerve and glial cells) and bulk-isolated nerve cell bodies revealed markedly lower proportions of [Me-14C]N 2-methyl andN 2 2 -dimethyl guanine and significantly higher proportions of [Me-14C] 1-methyl adenine in the neurons. The present findings suggest (1) that homologous tRNA methylation may provide developing brain cells with continuously changing populations of tRNA and (2) that neurons are enriched in adenine residue-specific tRNA methyltransferases that are highly sensitive to spermidine.This research was supported by grant NS-06294 of the United States Public Health Service.  相似文献   

17.
Phenylalanine ammonia-lyase, trans-cinnamate 4-monooxygenase, and capsaicinoid synthetase [Agric. Biol. Chem., 44, 2907 (1980)] activities were investigated in the subcellular fractions from protoplasts of placenta of Capsicum fruits. The subcellular distribution of intermediates of the capsaicinoid biosynthesis, trans-cinnamic acid and trans-p-coumaric acid, and capsaicinoid were also investigated. The activity of trans-cinnamate 4-monooxygenase and capsaicinoid synthetase was in the vacuole fraction. While the activity of phenylalanine ammonia-lyase was in the cytosol fraction. After feeding l-[U-14C]phenylalanine to the protoplast, the newly synthesized trans-p-coumaric acid and capsaicinoid were found in the vacuole fraction, while trans-cinnamic acid was not in the vacuole fraction. The possible role of the vacuole on the biosynthesis of capsaicinoid is also discussed.  相似文献   

18.
Summary The ability to convert cyclohexanecarboxylic acid to hippuric acid has been studied in liver from guinea pigs, rabbits, rats and mice using a gas chromatographic- mass spectrometric method employing selected ion monitoring. Guinea pig liver showed the highest activity, giving values double of those found in rabbit liver and five times those in rat liver. Only very weak activity was found in mouse liver. (Hydroxymethyl)cyclohexane, cyclohexanealdehyde and a-hydroxyethylcyclohexane, which are structurally related to cyclohexanecarboxylic acid but lack the carboxyl group, were not aromatized by guinea pig liver mitochondria. This finding indicates that the carboxyl group is essential for aromatization. Absence of aromatization was also found with the homologs cyclohexaneacetic acid and cyclohexanepropionic acid and with the di-acidstrans-1,2- andtrans-1,4-cyclohexanedicarboxylic acid. The effect of a methyl group in cyclohexanecarboxylic acid depended on its position. 2-Methyl-1-cyclohexanecarboxylic acid was not aromatized, however the 3- and 4-methyl derivatives underwent aromatization and subsequent conjugation with glycine. The rates of formation ofm-methyl- andp-methylhippuric acid were 16% and 9%, respectively, of that found for hippuric acid from cyclohexanecarboxylic acid (8.0 nmol/min/mg protein).  相似文献   

19.
Zeatin allylic phosphate (ZAP) retarded chlorophyll loss in the barleyleaf senescence assay at a concentration 20 times higher than for6-benzyladenine (BA): the effective concentrations for ZAP and BA were 10 and 0.5 , respectively. Sodium molybdate,an inhibitor of phosphatases, decreased the ZAP effective concentration to 0.5 without affecting leaf senescence andtrans-zeatin activity in the control. This demonstrates theimportance of the phosphate group for ZAP activity or its penetration into leafcells. ZAP up-regulated the protein kinase activity of the barley leaf chromatinwith concentration dependence similar to that oftrans-zeatin. Conversely, ZAP was 1000 times less activethan trans-zeatin in the competition with anti-idiotypeantibodies (raised against antibody to zeatin) for binding with atrans-zeatin-binding site oftrans-zeatin-binding protein ZBP67 isolated from barleyleaves. In contrast to trans-zeatin, ZAP did not activateRNA synthesis in the presence of ZBP in the in vitro systemcontaining chromatin and RNA polymerase I isolated from barley leaves. Insummary, data presented show that ZAP possesses cytokinin activity asdemonstrated by the retardation of barley leaf senescence, but moleculartarget(s) for ZAP in barley leaf cells differs, at least partially, from thesefor trans-zeatin. It seems possible that the cytokininactivity of ZAP results from its hydrolysis while producing zeatin.  相似文献   

20.
Despite their importance as potent odors that contribute to the aroma of numerous cheeses, S-methyl thioesters formation pathways have not been fully established yet. In a first part of our work, we demonstrated that Brevibacterium antiquum and Brevibacterium aurantiacum could produce S-methyl thioesters using short-chain fatty acids or branched-chain amino acids as precursors. Then, we focused our work on l-leucine catabolism using liquid chromatography tandem mass spectrometry and gas chromatography-mass spectrometry analyses coupled with tracing experiments. For the first time, several acyl–CoAs intermediates of the l-leucine to thioesters conversion pathway were identified. S-methyl thioisovalerate was produced from l-leucine, indicating that this amino acid was initially transaminated. Quite interestingly, data also showed that other S-methyl thioesters, e.g., S-methyl thioacetate or S-methyl thioisobutyrate, were produced from l-leucine. Enzymatic and tracing experiments allowed for postulating catabolic pathways leading to S-methyl thioesters biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号