首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Extracellular pullulanase was purified and crystallized from the culture fluid of Aerobacter aerogenes. Pullulanase was purified by means of ammonium sulfate fraction, DEAE-cellulose column chromatography and Sephadex column chromatography. Crystalline pullulanase was formed when saturated ammonium sulfate solution was added to the purified enzyme solution. The crystalline enzyme appeared as colorless fine rods. On ultracentrifugation analysis, the enzyme showed a single sharp and symmetrical Schlieren peak. The sedimentation coefficient, s20,w was 4.39S. Polyacrylamide gel electrophoresis at pH 8.4 gave a main band with two sub-bands and the molecular weight of the main enzyme was estimated to be 66,000 from Polyacrylamide gel electrophoresis and to be 58,000 from sedimentation equilibrium. The optimum pH and temperature for the enzyme action were pH 6.5 and 50°C, respectively.  相似文献   

2.
3.
4.
5.
d-Arabinose(l-fucose) isomerase (d-arabinose ketol-isomerase, EC 5.3.1.3) was purified from the extracts of d-arabinose-grown cells of Aerobacter aerogenes, strain M-7 by the procedure of repeated fractional precipitation with polyethylene glycol 6000 and isolating the crystalline state. The crystalline enzyme was homogeneous in ultracentrifugal analysis and polyacrylamide gel electrophoresis. Sedimentation constant obtained was 15.4s and the molecular weight was estimated as being approximately 2.5 × 105 by gel filtration on Sephadex G-200.

Optimum pH for isomerization of d-arabinose and of l-fucose was identical at pH 9.3, and the Michaelis constants were 51 mm for l-fucose and 160 mm for d-arabinose. Both of these activities decreased at the same rate with thermal inactivation at 45 and 50°C. All four pentitols inhibited two pentose isomerase activities competitively with same Ki values: 1.3–1.5 mm for d-arabitol, 2.2–2.7 mm for ribitol, 2.9–3.2 mm for l-arabitol, and 10–10.5 mm for xylitol. It is confirmed that the single enzyme is responsible for the isomerization of d-arabinose and l-fucose.  相似文献   

6.
The enzyme D-ribulokinase from Aerobacter aerogenes was purified to near homogeneity. The molecular weight, as determined by Sephacryl gel chromatography, is 116,000. The subunit molecular weight, determined by sodium dodecyl sulfate-gel electrophoresis, is 59,000, suggesting that D-ribulokinase is a dimer of identical subunits. Initial rate kinetic studies, involving substrate analogs and products, were carried out. These investigations support a kinetic mechanism of the Random Bi Bi type. Isotope partitioning, utilizing D-[3H]ribulose, indicates that the mechanism is steady state Random Bi Bi.  相似文献   

7.
8.
Bernofsky, Carl (The University of Kansas, Kansas City), and Russell C. Mills. Diaphorases from Aerobacter aerogenes. J. Bacteriol. 92:1404-1414. 1966.-Five enzymes which catalyze the reduction of 2,6-dichlorophenol-indophenol by reduced nicotinamide adenine dinucleotide (NADH(2)) have been separated from sonic extracts of Aerobacter aerogenes B199 by diethylaminoethyl (DEAE) cellulose chromatography. Three major chromatographic fractions (enzymes I, II, and III) account for most of the activity in the extract. Of the two minor fractions, one is associated with cytochrome b(1). The other is extremely labile, and was not studied further. The chromatographed diaphorases appear to have a specific requirement for flavin mononucleotide. They are also readily inactivated by dilution; however, this can be prevented by a combination of phosphate buffer, bovine serum albumin, and flavin mononucleotide. The different enzymes are clearly distinguishable by their activities with NADH(2) and reduced nicotinamide adenine dinucleotide phosphate (NADPH(2)) in the presence of various electron acceptors (2,6-dichlorophenol-indophenol, ferricyanide, menadione, and cytochrome c), and by their responses to inhibitors (amobarbital, antimycin A, Atabrine, p-chloromercuribenzenesulfonate, dicumarol, and 2,4-dinitrophenol). With 2,6-dichlorophenol-indophenol as acceptor, enzymes I, II, and III have comparable activities with either NADH(2) or NADPH(2). With menadione and ferricyanide as acceptors, enzymes II and III exhibit very high, NADH(2)-specific activities. When cytochrome c is the acceptor, however, enzyme III shows greater activity with NADPH(2) as the electron donor. Ferricyanide is the most active acceptor for the cytochrome b(1)-containing fraction. Coenzyme Q(6) does not appear to serve as an acceptor. All the diaphorases, with the exception of that in the cytochrome b(1)-containing fraction, are inhibited by p-chloromercuribenzenesulfonate. Amobarbital is relatively ineffective and inhibits only the indophenol reductase activity of enzyme I. The menadione reductase activity of enzymes I, and II, and the diaphorases in the cytochrome b(1)-containing fraction are strongly inhibited by antimycin A, 2,4-dinitrophenol, dicumarol, and Atabrine. However, the menadione reductase activity of enzyme III is affected only by the last three of these inhibitors. The diaphorases in sonic-treated extracts do not appear to be associated with a particulate fraction.  相似文献   

9.
10.
1. Pullulanase synthesis was studied in 16 classified (N.C.I.B.) strains and in an industrial strain (R) of Klebsiella aerogenes grown in chemostats containing maltose as inducer and sole carbon source. 2. Maximum synthesis was associated with carbon-limited growth at a low dilution rate (about 0.2h(-1)). The enzyme remained firmly cell-bound and seemed to be located on the cell surface. 3. Three strains had high activity (R, N.C.I.B. 5938, 8017), twelve were intermediate, and two (N.C.I.B. 8153, 9146) had negligible activity but were inducible with pullulan. 4. Pullulan similarly induced low, but adequate, activity in the other strains in conditions (nutrient limitation other than carbon-limitation) in which pullulanase was otherwise very seriously repressed. Nevertheless, in carbon limitation pullulan induced no more enzyme than did maltose, maltotriose or oligosaccharide mixtures, and ;hyperactivity' never developed on protracted culture. 5. Cyclic AMP relieved the transient repression produced by adding glucose to maltose-limited cultures and a further change to glucose-limited conditions led to constitutive pullulanase synthesis. 6. Amylomaltase and alpha-glucosidase activities were also examined but in less detail. 7. The presence of pullulanase in maltose-limited growth is discussed, but no clear function can be assigned to it at present. The molar growth yields for all the strains were very similar, and no correlation was found between the overgrowth of one strain by another and pullulanase activity. Further, any function as a general branching enzyme in polysaccharide synthesis seems unlikely.  相似文献   

11.
J P Casazza  H J Fromm 《Biochemistry》1977,16(14):3091-3097
The enzyme acyl-phosphate-hexose phosphotransferase from Aerobacter aerogenes was purified to electrophoretic homogeneity. The molecular weight of the enzyme as determined on Sephadex gels is 150 000. The enzyme possesses potent phosphotransferase and phosphohydrolase activities. Initial rate kinetics were used to investigate the mechanism of acyl-phosphate-hexose phosphotransferase. These studies, which involved a number of different phosphoryl donors and substrate analogues, suggest that the kinetic mechanism is of the rapid equilibrium random Bi Bi type. A number of other enzymes that exhibit both transferase and hydrolase activities involve obligatory covalent enzyme-substrate intermediates in their mechanisms of action.  相似文献   

12.
13.
D-apiose reductase from Aerobacter aerogenes   总被引:1,自引:0,他引:1       下载免费PDF全文
A strain of Aerobacter aerogenes PRL-R3 has been isolated which utilizes d-apiose as its sole source of carbon. A new enzyme, d-apiose reductase, was discovered in this strain. The enzyme was not present when the strain was grown on d-glucose. d-Apiose reductase catalyzes the nicotinamide adenine dinucleotide-dependent interconversion of d-apiose and d-apiitol. The enzyme is specific for d-apiose and d-apiitol, with a few possible exceptions. The K(m) for d-apiose is 0.02 m. The K(m) for d-apiitol is 0.01 m. The enzyme is almost completely specific for the reduced and oxidized forms of nicotinamide adenine dinucleotide. When cell-free extracts were centrifuged at 100,000 x g for 1 hr, the enzyme remained in solution. Optimal activity for the reduction of d-apiose was obtained at pH 7.5 in glycylglycine buffer, whereas for the oxidation of d-apiitol it was obtained at pH 10.5 in glycine buffer. Enzymatic reduction of d-apiose was not appreciably affected by the presence of 0.02 m ethylenediaminetetraacetate. Paper chromatography and specific spray reagents were used to identify d-apiitol and d-apiose as the products of this reversible reaction. d-Apiose and d-apiitol did not serve as substrates for ribitol dehydrogenase and d-arabitol dehydrogenase from A. aerogenes PRL-R3.  相似文献   

14.
Lipase (EC 3.1.1.3) of Geotrichum candidum Link was purified by means of ammonium sulfate fractionation, DEAE-Sephadex column chromatography, gel-filtration on Sephadex G–100 and Sephadex G–200, and was finally crystallized in concentrated aqueous solution. It was confirmed that the crystallized preparation was homogeneous electrophoretically and ultracentrifugally.

It was estimated with the crystalline enzyme that the sedimentation constant (s20, w) was 4.0, the isoelectric point was pH 4.33, and the molecular weight was 53,000~55,000. From the result of amino acid analysis, none of sulfur containing amino acid was detected in the enzyme. It was also recognized that the crystalline preparation contained about 7% of the carbohydrate and very small amount of lipid. It was characterized that the lipase was the most active at pH 5.6~7.0 on olive oil, at 40°C and was stable in the range of pH 4.2 to 9.8 at 30°C for 24 hr, and was stable below 55°C for 15 min.  相似文献   

15.
16.
A method for the preparation of a 150-fold purified and homogenous A. aerogenes urease is reported. The enzyme exhibited two pH optima at pH 7.0 and 7.5 in triethanolamine and phosphate buffer, respectively. The affinity of the enzyme toward its substrate increased with the increase of pH. No effect of the pH was observed on the measured temperature coefficient (Q10). There was no discontinuity in the Arrhenius plots at pH 5.4 and 7.5 but an upward discontinuity at pH 6.15 and 8.7 with transition temperature at 30 degrees C. Also, the calculated activation energies are greatly affected by the pH of the enzyme reaction mixture.  相似文献   

17.
18.
19.
20.
The mediated transport of citrate in Aerobacter aerogenes was studied. According to data obtained by examining the distribution of radioactive citrate at room temperature and at 0 C, a carrier system appears to be located on the membrane. The carrier system is inducible and very specific, not acting on the related compounds isocitrate and cis-aconitate. Induction required synthesis of both ribonucleic acid and protein as determined by starving auxotrophic mutants and by using specific inhibitors of protein synthesis. Citrate transport was inhibited by N-ethyl maleimide, dinitrofluorobenzene, and uranyl nitrate. A kinetic study of uranyl nitrate inhibition revealed that the inhibition of citrate transport was different from that of glucose penetration. Cyanide also discriminated citrate from glucose penetration inhibiting only the former. These last results suggested that energy is required for citrate penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号