首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Labelled shikimic acid was efficiently incorporated into the aniline moiety of N-(γ-L-glutamyl)-4-hydroxyaniline, a characteristic aromatic compound of the common mushroom, Agaricus bisporus. Incubations with [3-3H]- and [1,6-14C]shikimic acid clearly proved that the amination of shikimic acid occurs at its 4-position during the biosynthesis of N-(γ-L-glutamyl)-4-hydroxyaniline.  相似文献   

2.
The shikimic acid pathway, ubiquitous in microorganisms and plants, provides precursors for the biosynthesis of primary metabolites such as the aromatic amino acids and folic acid. Several branchpoints from the primary metabolic pathway also provide aromatic and, in some unusual cases, nonaromatic precursors for the biosynthesis of secondary metabolites. We report herein recent progress in the analysis of two unusual branches of the shikimic acid pathway in streptomycetes; the formation of the cyclohexanecarboxylic acid (CHC)-derived moiety of the antifungal agent ansatrienin and the dihydroxycyclohexanecarboxylic acid (DHCHC) starter unit for the biosynthesis of the immunosuppressant ascomycin. A gene for 1-cyclohexenylcarbonyl-CoA reductase, chcA, which plays a role in catalyzing three of the reductive steps leading from shikimic acid to CHC has been characterized from Streptomyces collinus. A cluster of six open reading frames (ORFs) has been identified by sequencing in both directions from chcA and the putative role of these in CHC biosynthesis is discussed. The individual steps involved in the biosynthesis of DHCHC from shikimic acid in Streptomyces hygroscopicus var ascomyceticus has been delineated and shown to be stereochemically and enzymatically distinct from the CHC pathway. A dehydroquinate dehydratase gene (dhq) likely involved in providing shikimic acid for both DHCHC biosynthesis and primary metabolism has been cloned, sequenced and characterized. Received 17 February 1998/ Accepted in revised form 26 April 1998  相似文献   

3.
Summary WhenTrichophyton rubrum is grown in a minimal medium containing glucose, the carbon skeleton of fungal phenylalanine and tyrosine is derived from the glucose carbon. Tracer experiments with variously labeled glucose-C14 indicate that phenylalanine synthesis is linked to glycolysis, but suggest that the pentose phosphate pathway is not involved. These findings suggest that aromatic amino acid biosynthesis may not be linked to the shikimic acid pathway inT. rubrum.  相似文献   

4.
Summary Trichophyton rubrum was assayed for shikimic, quinic, and protocatechuic acids with biological and chemical techniques. Since none of these metabolites were detected, we conclude that the shikimic acid pathway of aromatic biosynthesis is probably not involved in the synthesis of phenylalanine and tyrosine by this organism.  相似文献   

5.
14C-labelled shikimic acid and double labelled shikimic acid tritiated stereospecifically at C-6 are incorporated into 3-(3-carboxyphenyl)alanine, 3-(3-carboxyl-4-hydroxyphenyl)alanine, phenylalanine, and tyrosine in Resda lutea L., Reseda odoratta L., Iris x Hollandica cv. Prof. Blauw, and Iris x hollandica cv. Wedgwood. The experiments with 14C-labelled shikimic acid confirm that the aromatic carboxyl groups and rings in 3-(3-carboxyphenyl)-alanine and 3-(3-carboxy-4-hydroxyphenyl)alanine derive from the carboxyl group and ring in shikimic acid whereas the experiments with double labelled shikimic acid demonstrate that the pro-6S-hydrogen atom is retained and the pro-6R-hydrogen atom lost in the biosynthesis of 3-(3-carboxyphenyl)alanine, phenylalanine, and tyrosine in the plants used. 3H was located in the ortho-position in the aromatic rings of phenylalanine and tyrosine but in a position para to the alanine side chain of 3-(3-cabroxyphenyl)alanine. No 3H was found in 3-(3-carboxy-4-hydroxyphenyl)alanine. This supports a derivation of the last two compounds from chorismic acidvia isochorismic acid, isoprephenic acid, and 3′-carboxyphenylpyruvic acid and 3′-carboxy-4′-hydroxyphenylpyruvic acid. The 3H/14 C ratio in 3-(3-carboxyphenyl)alanine was found higher than in the precursor used. This isotope effect must operate by competition between the pathways from isoprephenic acid to 3′-carboxyphenylpyruvic acid and to 3′-carboxy-4′-hydroxyphenylpyruvic acid. The proposed biosynthetic pathways for the two carboxy-substituted amino acids are in agreement with their distribution patterns in the plant kingdom and suggest that they may derive from minor changes of enzymes involved in the general pathways of aromatic biosynthesis.  相似文献   

6.
Summary Although the addition of shikimic acid to the medium had no effect on the level of production of rapamycin byStreptomyces hygroscopicus,14C-shikimic acid was incorporated into rapamycin to a very high degree.13C-Shikimic acid was successfully prepared from 1-[13C]-glucose using a mutant ofKlebsiella pneumoniae, and used to label rapamycin. It was found that13C-shikimic acid was incorporated into the cyclohexane moiety of rapamycin, thereby establishing the shikimic acid pathway origin of the seven-carbon starter unit.  相似文献   

7.
Even thoughTrichophyton rubrum is permeable to exogenous shikimic acid, neither shikimic nor quinic acids stimulate the growth of this fungus in a minimal medium deficient in phenylalanine or tyrosine, nor do they serve as substrates for pigmentogenesis in media lacking these amino acids. The respiration of the dermatophyte is unaffected by shikimic or quinic acids and the fungus does not have the capacity to utilize either compound when it is added to the culture medium. Isotope dilution studies with shikimic acid-U-C14 show that de novo shikimic acid synthesis does not occur. This information supports previous findings that the shikimic acid pathway of aromatic biosynthesis is not involved in the biosynthesis of phenylalanine byTrichophyton rubrum.
Zusammenfassung ObwohlT. rubrum fur exogene shikimicsäure durchlässig ist, fördern weder Shikimicsäure noch Quinicsäure das Wachstum dieses Pilzes im Falle eines Mangels von Phenykalanine oder Tyrosine, noch dienen sie als Substanzen für Pigmentgenese in Medien ohne diese Aminosäuren. Die Atmung des Pilzes ist durch Shikimicoder Quinicsäure unbeeinflußt und der Pilz ist unfähig, beide Substanzen zu benützen, wenn sie zum Kulturmedium hinzugefügt werden. Isotope Verdünnungen mit Shikimicsäure-U-C14 zeigten, daß de novo Shikimicsäure-Synthese nicht erfolgt. Diese Erkenntnis unterstüzt vorherige Befunde, daß Shikimicsäure Richtung der aromatischen Biosynthese in der Biosynthese von Phenylalanine durchT. rubrum nicht begangen wird.


University of Illinois at the Medical Center Department of Microbiology, Chicago, Illinois 60612  相似文献   

8.
A transketolase mutant was first isolated from Corynebacterium glutamicum, an organism of industrial importance. The mutant strain exhibited an absolute requirement for shikimic acid or the aromatic amino acids and vitamins for growth, and also failed to grow on ribose or gluconic acid as sole carbon source, even with the aromatic supplement. All of these defective properties were fully restored in spontaneous revertants, indicating the existence of a single transketolase in C. glutamicum that was indispensable both for aromatic biosynthesis and for utilization of these carbohydrates in vivo. The transketolase mutant accumulated ribulose extracellularly when cultivated in glucose medium with shikimic acid, but no ribose was detected. Received: 10 April 1998 / Received revision: 26 May 1998 / Accepted: 14 June 1998  相似文献   

9.
A cell line of Eschscholtzia californica selected for meta-fluorotyrosine (MFT) tolerance was found to have 10-fold increased levels of phenylalanine and tyrosine compared to the parent line, while most other amino acids were only increased 2-fold. Tracer experiments with shikimic acid in the presence of MFT showed that the biosynthesis of the aromatic amino acids was not impaired in the tolerant line. Feeding experiments with phenylalanine, tyrosine, or shikimic acid also revealed a reduced turnover of the pools of the aromatic amino acids in the variant. Thus undisturbed de novo biosynthesis of the aromatic amino acids and dilution of toxic effects of MFT by the enlarged pool sizes seemed to be the main reason for the acquired tolerance. Despite the enlarged availability of the precursor tyrosine, formation of the benzophenanthridine alkaloids was enhanced neither in the growth nor in the production medium.  相似文献   

10.
Auxotrophic mutants of Escherichia coli W or K12 blocked before shikimic acid in the aromatic biosynthetic pathway grew poorly on shikimic acid as sole aromatic supplement. This poort growth response was correlated with a relatively poor ability to transport shikimic acid. If citrate was present in the growth medium (as it is in some commonly used basal media) the growth of some of the E. coli K12 mutants on shikimate was further reduced.Mutants were derived from pre-shikimate auxotrophs which grew rapidly on media containing shikimic acid. These derivatives all had an increased ability to transport shikimic acid. Thus, it is proposed that the growth on shikimate observed in the parent cells is restricted by their relatively poor uptake of shikimate from the medium and that this restriction may be removed by a mutation which enhances shikimate transport.Transduction analysis of the mutations which enhanced utilization and transport of shikimic acid by E. coli K12 strains indicated at least two classes. Class 1 was about 20% contransduced with the histidine region of the E. coli K12 chromosome and appeared to be coincident with a known shikimate transport locus, shiA. Class 2 was not contransduced with his. The locus (or loci) of this class is unknown. Kinetic measurements suggested that bot classes had shikimate uptake systems derived from the wild-type system. Two class 1 mutants had increased levels of otherwise unaltered wild-type transport while one class 2 mutant had an altered Michaelis constant (Km) for shikimate transport.  相似文献   

11.
The role of shikimic acid in the biosynthesis of vitamin K2   总被引:13,自引:6,他引:7       下载免费PDF全文
1. Shikimic acid was shown to be a precursor of vitamin K(2) (MK-8) in Escherichia coli. 2. The benzene ring of the naphthaquinone arises from shikimic acid. 3. The methyl group of methionine is incorporated into vitamin K(2). 4. A scheme relating the biosynthesis of vitamin K(2) and ubiquinone to the general pathway of aromatic biosynthesis is proposed.  相似文献   

12.
The isolation of chloramphenicol resistant strains from Corynebacterium hydrocarboclastus KY 4339 (rough type) was examined to seek a good source of corynecins (analogs of chloramphenicol). Various mutants resistant to chloramphenicol were isolated in the range from 50 to 1000 µg/ml by adaptation or induced mutagenesis by N-methyl-N′-nitro-N-nitro-soguanidine. Productivities of mutants related apparently to the degree of resistance from 50 to 500 µg/ml. Highly resistant mutants capable of growing in the presence of 1000 µg of chloramphenicol per ml showed decreased productivity which might be related to their lower growth rate in the fermentation medium.

Further attempts to derive resistant mutants to structural analogs of aromatic amino acids resulted in only a slight improvement of productivity, indicating that aromatic amino acids might play minor regulatory roles in corynecins synthesis.

The increase in productivity of corynecins by the best strain was about 4.5 fold of the parental strain.  相似文献   

13.
Fomannoxin is a biologically active benzohydrofuran, which has been suggested to be involved in the pathogenicity of the root rotting fungus Heterobasidion annosum sensu lato. The biosynthesis of fomannoxin was investigated through an isotopic enrichment study utilizing [1-13C]glucose as metabolic tracer. 13C NMR spectroscopic analysis revealed the labeling pattern and showed that the isoprene building block originates from the mevalonic acid pathway, whereas the aromatic motif is formed via the shikimic acid route by elimination of pyruvate from chorismic acid. A natural product, 4-hydroxy-3-(3-methylbut-2-enyl)benzaldehyde (1), was isolated and characterized, and was suggested to be a key intermediate in the biosynthesis of fomannoxin and related secondary metabolites previously identified from the H. annosum fungal species complex.  相似文献   

14.
The biosynthetic pathway for gallic and ellagic acids in young, mature and autumn leaves ofAcer buergerianum andRhus succedanea was examined by tracer experiments, and also by isotope competition, withd-shikimic acid-14C,l-phenylalanine-U-14C,l-phenyllactic acid-U-14C, gallic acid-G-14C and their unlabeled compounds. In young leaves of both plants, the incorporation rate of labeled shikimic acid into gallic acid was significantly higher than that of labeled phenylalanine, whereas in the mature and autumn leaves the latter was a good precursor rather than the former for the gallic acid biosynthesis. Therefore, two pathways for gallic acid formation, through β-oxidation of phenylpropanoid and through dehydrogenation of shikimic acid, could be operating inAcer andRhus leaves, and the preferential pathway is altered by leaf age. In both plants, the incorporation rate of labeled phenyllactic acid during a 24 hr metabolic period was almost the same as that of labeled phenylalanine. The incorporation ofd-skikimic acid-G-14C,l-phenylalanine-U-14C andl-phenyllactic acid-U-14C into ellagic acid was very similar to the case of the radioactive gallic acid formation. Furthermore, regardless of the presence of unlabeled shikimic acid and/or phenylalanine, incorporation of the radioactivity of labeled gallic acid into ellagic acid occurred at a very high rate, suggesting the reciprocal radical reaction of gallic acid for the ellagic acid formation. The incorporation of labeled compounds into ellagitanins was also examined and their biosynthesis discussed further.  相似文献   

15.
A transposon-induced mutation in Escherichia coli resulted in a lack of two modified nucleosides in the transfer ribonucleic acid. These nucleosides were identified as uridine-5-oxyacetic acid (cmo5U)2 and its methylester, mcmo5U. Both became radioactively labelled using [methyl-14C]methionine as methyl donor when wild-type cells were grown in a defined rich medium. We believe that both nucleosides have hydroxyuridine as a common precursor, which should be methylated in the first modification step. However, in our system in vitro the tRNA from the mutant was not a methyl group acceptor, indicating that the step affected in the mutant occurs before the methylation step. Thus, the most likely biosynthetic pathway is: formation of (1) hydroxyuridine, (2) methoxyuridine. (3) cmo5U and, in some cases, (4) mcmo5U. The mutant had also become Aro?, i.e. it required aromatic amino acids for growth. Genetic analysis revealed that the transposon Tn5 had been integrated close to or within the aroD gene, the gene product of which participates in the synthesis of shikimic acid. The common pathway of the biosynthesis of aromatic amino acids includes the genes aroB, D, E, A and C in that order, and any mutant defective in any of these genes lacked cmo5U and mcmo5U in their tRNA. When shikimic acid was included in the defined rich medium used, the Tn5-induced mutant regained the normal level of cmo5U and mcmo5U while an aroC mutant (distal to shikimic acid but prior to chorismic acid) did not. The rich medium used contained, besides the aromatic amino acids, all the precursors for the synthesis of folate, ubiquinone and enterochelin. Thus, chorismic acid itself or a metabolite of it in the synthetic pathway to vitamin K2 or in an unknown pathway must play a pivotal role in this specific modification of the tRNA. These results reveal a novel link between the biosynthesis of amino acids and modification of tRNA.  相似文献   

16.
Agaricus bisporus contains novel aromatic compounds. By incubation of the mushroom with [G-14 C] shikimic acid, the radioactivity was incorporated into tyrosine, phenylalanine and several unidentified metabolites. The most radioactive metabolite in the stipe and the cap was identified as N-(γ-L-glutamyl)-4-hyrroxyaniline. The radioactivity was proved to be localized in the 4-hydroxyaniline moiety of this compound.  相似文献   

17.
Radioactive shikimic acid and l-tyrosine were shown to be efficient precursors of 3,4-dihydroxyphenylalanine (DOPA) in Vicia faba. [1-14C]Acetate and l[U-14C]phenylalanine were not incorporated into tyrosine or DOPA. Thus the synthesis of DOPA occurs via the shikimic acid pathway and tyrosine or a very closely related metabolise. Phenolase was present in etiolated plants in much larger quantities after a brief light exposure whereas DOPA concentration was relatively constant during all stages of plant growth. Partially purified phenolase did not catalyze the conversion of tyrosine to DOPA and does not appear to have a role in DOPA synthesis.  相似文献   

18.
Agaricus bisporus contains the unique aniline derivative, N-(γ-L-glutamyl)-4-hydroxyaniline. 14C-labelled chorismic acid was quantitatively incorporated into the 4-hydroxyaniline moiety of this aniline derivative, whereas 14C-labelled prephenic acid and anthranilic acid were not incorporated into 4-hydroxyaniline. These observations indicate the branch point of the biosynthetic route of 4-hydroxyaniline in the shikimic acid pathway to be chorismic acid. Moreover, 4-aminobenzoic acid proved to be an effective precursor of 4-hydroxyaniline.  相似文献   

19.
The current knowledge concerning the biosynthesis of chloramphenicol is discussed. Cultures of Streptomyces sp. 3022a fed 14C-shikimie acid incorporated the label to the same extent into phenylalanine, tyrosine, and chloramphenicol. Of possible precursors of the phenylpropanoid nucleus of this antibiotic only p-aminophenylalanine and DL-threo-p-amino phenylserine specifically labeled chloramphenicol. On the basis of these results a pathway for the biosynthesis of chloramphenicol is presented. The lack of specific incorporation of 15N-nitrogen from a competitive feeding experiment in which both l5N-nitrate and 14N-DL-serine were fed to growing cultures suggests that both the amido- and the nitro-nitrogen atom present in this antibiotic are derived from a common pool. Studies on the enzyme, DAHP synthetase, show that in streptomyces sp. 3022a it is not subject to feed back inhibition by either phenylalanine, tyrosine, or chloramphenicol.  相似文献   

20.
Biosynthetic pathways to p-hydroxybenzoic acid in polar lignin were examined by tracer experiments. High incorporation of radioactivity to the acid was observed when shikimic acid-[1-14C], phenylalanine-[3-14C], trans-cinnamic acid-[3-14C], p-coumaric acid-[3-14C] and p-hydroxybenzoic acid-[COOH-14C] were administered, while incorporation was low from shikimic acid-[COOH-14C], phenylalanine-[1-14C], phenylalanine-[2-14C], tyrosine-[3-14C], benzoic acid-[COOH-14C], sodium acetate-[1-14C] and d-glucose-[U-14C]. Thus p-hydroxybenzoic acid in poplar lignin is formed mainly via the pathway: shikimic acid → phenylalanine → trans-cinnamic acid → p-coumaric acid → p-hydroxybenzoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号