首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The effects of DBMIB on photophosphorylation and glycolysis in Scenedesmus obtusiusculus Chod. were investigated by measuring the uptake of inorganic phosphate. To analyze the effects of DBMIB on the different energy coupling possibilities in open chain and cyclic photophosphorylation, DBMIB was given to the algae in narrow concentration intervals between 10?6M to 10?4M, either alone, or in combination with DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) or desaspidin. DBMIB inhibits non-cyclic as well as cyclic photophosphorylation in Scenedesmus. However, the DCMU resistant photophosphorylation reactions are less sensitive to DBMIB than the open chain photophosphorylating system in non-DCMU treated cells. Low concentrations of DBMIB even released a part of the DCMU inhibition. Experiments with combinations of DBMIB and desaspidin also indicated that cyclic photophosphorylation is less sensitive to DBMIB than non-cyclic. The inhibition of DCMU resistant cyclic phosphorylation by DBMIB, which is a competitive inhibitor of quinones, indicated a participation of plastoquinones in this type of energy coupling as well as in the non-cyclic and DCMU-sensitive processes. The cyclic and the non-cyclic photophosphorylation pathways probably use different parts of the plastoquinone pool. For the purpose of the experiments, it was necessary to produce data for the effect of DBMIB (10?6–10?4M) on glycolysis. The highest concentration gave 50% inhibition.  相似文献   

2.
The dependence of in vivo photophosphorylation on light intensity was studied in the unicellular green alga Scenedesmus obtusiusculus. By selective use of the inhibitor DCMU, phosphorylation in (I) the complete system, (II) the pseudocyclic system alone, and (III) the true cyclic system alone, were followed. When the total binding of phosphate was studied, all reaction types became light saturated in about the same manner. The effect of DCMU on the level of ATP varied according to light intensity. As for the specific systems of photophosphorylation, the following ATP data were found: (I) In the complete system the level of ATP decreases with light intensity. (II) Under pseudo-cyclic conditions light first increases and then decreases the ATP level. Under the atmospheric conditions used (i.e. CO2-free nitrogen) this indicates a regulation between photophosphorylation and glycolysis, for which possible explanations are discussed. (III) In the true cyclic conditions light has little effect on the ATP level. The possibility is indicated that there is a structural difference between the non-cyclic (site 1) and the pseudocyclic (site 2) sites of photophosphorylation on the one hand and the true cyclic site (3) on the other.  相似文献   

3.
The effects of the tertiary amines tetracaine, brucine and dibucaine on photophosphorylation and control of photosynthetic electron transport in isolated chloroplasts of Spinacia oleracea were investigated. Tertiary amines inhibited photophosphorylation while the related electron transport decreased to the rates, observed under non-phosphorylating conditions. Light induced quenching of 9-aminoacridine fluorescence and uptake of 14C-labelled methylamine in the thylakoid lumen declined in parallel with photophosphorylation, indicating a decline of the transthylakoid proton gradient. In the presence of ionophoric uncouplers such as nigericin, no effect of tertiary amines on electron transport was seen in a range of concentration where photophosphorylation was inhibited. Under the influence of the tertiary amines tested, pH-dependent feed-back control of photosystem II, as indicated by energy-dependent quenching of chlorophyll fluorescence, was unaffected or even increased in a range of concentration where 9-aminoacridine fluorescence quenching and photophosphorylation were inhibited. The data are discussed with respect to a possible involvement of localized proton flow pathways in energy coupling and feed-back control of electron transport.Abbreviations 9-AA 9-aminoacridine - J e flux of photosynthetic electron transport - PC photosynthetic control - pH1 H+ concentration in the thylakoid lumen - pmf proton motive force - P potential quantum yield of photochemistry of photosystem II (with open reaction centers) - Q A primary quinone-type electron acceptor of photosystem II - q Q photochemical quenching of chlorophyll fluorescence - q E energy-dependent quenching of chlorophyll fluorescence - q AA light-induced quenching of 9-amino-acridine fluorescence  相似文献   

4.
Summary Cyclic photophosphorylation catalyzed by chromatophores derived from the facultative phototroph, Rhodopseudomonas capsulata was investigated. In the absence of an external electron donor such as succinate, cyclic photophosphorylation is strongly inhibited by O2. Maximal phosphorylation rates are obtained in the presence of molecular hydrogen. Cytochrome c and bovine serum albumin have no significant effects on the reaction. However, dichlorophenolindophenol and phenazonium methosulfate are inhibitory to cyclic photophosphorylation. Cyclic photophosphorylation is sensitive to antimycin A, but highly resistant to heptylhydroxy-quinoline-N-oxide. Neither phenazonium methosulfate, nor dichlorophenolindophenol or tetramethyl-p-phenylenediamine can effect antimycin-insensitive cyclic photophosphorylation. Oligomycin strongly inhibits the phosphorylation. Overreduction caused by the ascorbate-dichlorophenolindophenol couple results in strong inhibition of phosphorylation. Addition of fumarate decreases the inhibition caused by overreduction. However, the fumarate mediated phosphorylation is nearly completely inhibited by antimycin A. Atebrine is a strong inhibitor for cyclic photophosphorylation, whereas dinitrophenol is only a weak inhibitor.
Zusammenfassung Die durch Chromatophoren aus dem fakultativ phototrophen Rhodopseudomonas capsulata katalysierte cyclische Photophosphorylierung wurde untersucht. In der Abwesenheit eines zusätzlichen Elektronendonators wie Succinat wird die cyclische Photophosphorylierung durch O2 stark gehemmt. Maximale Phosphorylierungsraten werden unter H2-Atmosphäre erzielt. Cytochrom c und Rinderserumalbumin haben keinen deutlichen Effekt auf die Reaktion. Demgegenüber haben Dichlorphenolindophenol und Phenazinmethosulfat eine hemmende Wirkung auf die cyclische Photophosphorylierung. Die cyclische Photophosphorylierung wird durch Antimycin A stark gehemmt, ist aber gegenüber Heptyl-hydroxy-chinolin-N-oxyd auffallend resistent. Weder Phenazinmethosulfat noch Dichlorphenolindophenol oder Tetramethyl-p-phenylendiamin bewirken eine antimycin-resistente Phosphorylierung. Oligomycin hemmt die Photophosphorylierung stark. Eine durch Ascorbat-Dichlorphenolindophenol verursachte Überreduktion wirkt sich stark hemmend auf die Phosphorylierung aus. In Gegenwart von Fumarat ist die durch Überreduktion bedingte Hemmung stark verringert. Diese vom Fumarat abhängige Photophosphorylierung wird jedoch durch Antimycin A beinahe vollständig gehemmt. Atebrin ist ein starker Hemmstoff für die cyclische Photophosphorylierung. Demgegenüber ist die durch Dinitrophenol bewirkte Hemmung der cyclischen Photophosphorylierung gering.

Abbreviations ADP adenosine diphosphate - ATP adenosine triphosphate - BChl bacteriochlorophyll - DNP 2,4-dinitrophenol - DCPIP dichlorophenolindophenol - FAD flavinadenine dinucleotide - FMN flavin mononucleotide - G-6-P glucose-6-phosphate - HOQNO heptylhydroxy-quinoline-N-oxide - NAD(P) nicotinamid-adenine-dinucleotide (phosphate) - PMS phenazonium methosulfate - Rh. Rhodospirillum - Rhps. Rhodopseudomonas - TMPD tetramethyl-p-phenylenediamine  相似文献   

5.
The role of cyclic photophosphorylation in vivo   总被引:1,自引:0,他引:1       下载免费PDF全文
When cyclic photophosphorylation is inhibited in Chlorella vulgaris cells by carbonylcyanide-trifluoromethoxy phenylhy-drazone, photosynthetic CO2-fixation under anaerobic conditions exhibits a distinct lag. Under the same conditions, the light-dependent formation of ribulose diphosphate shows also this lag. It is concluded that cyclic photophosphorylation is required to fill up the pools of phosphorylated intermediates of the Calvin cycle at a time when noncyclic photophosphorylation cannot yet efficiently operate. Under aerobic conditions, the initial energy demand can be accommodated by respiratory ATP or cyclic photophosphorylation or both. Evidence for stoichiometric participation of cyclic photophosphorylation in photosynthesis is still lacking.  相似文献   

6.
S.C. Huber  G.E. Edwards   《BBA》1976,449(3):420-433
1. Cyclic photophosphorylation driven by white light, as followed by 14CO2 fixation by mesophyll chloroplast preparations of the C4 plant Digitaria sanguinalis, was specifically inhibited by disalicylidenepropanediamine (DSPD), antimycin A, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIb), 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide (EDAC), and KCN suggesting that ferredoxin, cytochrome b563, plastoquinone, cytochrome f, and plastocyanin are obligatory intermediates of cyclic electron flow. It was found that 0.2 μM DCMU and 40 μM o-phenanthroline blocked noncyclic electron flow, stimulated cyclic photophosphorylation, and caused a partial reversal (40–100%) of the inhibition by DBMIB and antimycin A, but not DSPD.

2. Cyclic photophosphorylation could also be activated using only far-red illumination. Under this condition, however, cyclic photophosphorylation was much less sensitive to the inhibitors DBMIB, EDAC and antimycin A, but remained completely sensitive to DSPD and KCN. Inhibition in far-red light was not increased by preincubating the chloroplasts with the various inhibitors for several minutes in white light.

3. The striking correspondence between the effects of photosystem II inhibitors, DCMU and o-phenanthroline, on cyclic photophosphorylation under white light and cyclic photophosphorylation under far-red light (in the absence of photosystem II inhibitors) suggests that electrons flowing from photosystem II may regulate the pathway of cyclic electron flow.  相似文献   


7.
Measurements of minimum photon requirements   总被引:1,自引:0,他引:1  
This is the first letter on the topic of cyclic photophosphorylation in vivo. The readers should also read J. Meyers (Is there significant cyclic electron flow around photoreaction 1 in cyanobacteria), Photosynthesis Research 14: 55–70 (1987)...Govindjee, editor.  相似文献   

8.
Under anaerobic conditions in the light, active K influx inHydrodictyon africanum is supported by cyclic photophosphorylation.The use of selective inhibitors shows that, in the presenceof CO2, a considerable portion of the ATP used by the K pumpis supplied by noncyclic photophosphorylation. The rest of theATP in these conditions comes from cyclic photophosphorylation.This is true under light-limiting as well as light-saturatedconditions. If non-cyclic photophosphorylation is inhibited (by removalof carbon dioxide, by the addition of cyanide which interfereswith the carboxylation reaction, or by inhibition of photosystemtwo with DCMU or supplying only far-red light), the K influxat low light intensities is stimulated, and its characteristicsbecome those of a process powered by cyclic photophosphorylationalone. These results are interpreted in terms of a competitionfor ATP between K influx and CO2 fixation. Implicit in thisexplanation is a requirement for a switch of excitation energyabsorbed by photosystem one from cyclic photophosphorylationto non-cyclic photophosphorylation whenever conditions (presenceof CO2and photosystem two activity) allow CO2 fixation to occur. Further evidence for such a switch of excitation energy absorbedby photosystem one was obtained in experiments in which redand far-red light were applied separately and together. It wasfound that CO2 fixation showed the Emerson enhancement effect,while K influx (in the presence of CO2) shows a ‘de-enhancement’.This suggests that far-red light alone powers cyclic photophosphorylation;if red light is also present, some of the far-red quanta arediverted to non-cyclic photophosphorylation. The nature of the interaction between cyclic and non-cyclicphotophosphorylation is discussed in relation to these and otherpublished results.  相似文献   

9.
An investigation of the action of phenylmereuric acetate (PMA) and phosphate on light-induced shrinkage (measured by light scattering and Coulter Counter techniques) and on photosynthetic reactions in spinach chloroplasts led to the following conclusions:
  • 1) PMA stimulated light-induced shrinkage (under conditions of cyclic and non-cyclic electron flow) at concentrations which completely inhibited cyclic and non-cyclic photophosphorylation and nicotinamide adenine dinucleotide phosphate (NADP) reduction, though ferricyanide reduction was activated. Although PMA inhibited NADP reduction (probably because this sulfhydryl reagent interfered with the ferredoxin-NADP rednetase) it ean also be considered an uncoiipler (when ferricyanide is the electron acceptor).
  • 2) Phosphate maximized light-induced shrinkage (under conditions of cyclic and non cyclic electron flow) at concentrations which did not affect ferricyanide reduction but caused a 40 to 50 per cent inhibition of NADP reduction.
  • 3) The pattern of the light scattering response to these two compounds was quite different. In the presence of PMA, the forward (light on) and hack (light off) reactions went to completion rapidly. In the presence of phosphate, the back reaction was rapid but, in the light-induced reaction, three phases were discernible.
  • 4) Compared with uncouplers such as NH4Cl, carbonyl cyanide m-chlorophenyl-hydrazone, pentachlorophenol, and dicoumarol, all of which inhibited both photophosphorylation and conformational changes in chloroplasts, PMA (like quinacrine) had a specific action since it inhibited photophosphorylation while shrinkage was stimulated.
  • 5) It appeared that PMA acted at a site beyond the formation of high energy inter-mediates and that, in the absence of photophosphorylation, more energy was diverted to mechanical work (shrinkage). It would seem that, in a cyclic electron flow system, in which ATP synthesis is blocked at a late step (e.g. by PMA), shrinkage may be an indirect method for measuring electron flow.
  相似文献   

10.
Recently, a number of techniques, some of them relatively new and many often used in combination, have given a clearer picture of the dynamic role of electron transport in Photosystem I of photosynthesis and of coupled cyclic photophosphorylation. For example, the photoacoustic technique has detected cyclic electron transport in vivo in all the major algal groups and in leaves of higher plants. Spectroscopic measurements of the Photosystem I reaction center and of the changes in light scattering associated with thylakoid membrane energization also indicate that cyclic photophosphorylation occurs in living plants and cyanobacteria, particularly under stressful conditions.In cyanobacteria, the path of cyclic electron transport has recently been proposed to include an NAD(P)H dehydrogenase, a complex that may also participate in respiratory electron transport. Photosynthesis and respiration may share common electron carriers in eukaryotes also. Chlororespiration, the uptake of O2 in the dark by chloroplasts, is inhibited by excitation of Photosystem I, which diverts electrons away from the chlororespiratory chain into the photosynthetic electron transport chain. Chlororespiration in N-starved Chlamydomonas increases ten fold over that of the control, perhaps because carbohydrates and NAD(P)H are oxidized and ATP produced by this process.The regulation of energy distribution to the photosystems and of cyclic and non-cyclic phosphorylation via state 1 to state 2 transitions may involve the cytochrome b 6-f complex. An increased demand for ATP lowers the transthylakoid pH gradient, activates the b 6-f complex, stimulates phosphorylation of the light-harvesting chlorophyll-protein complex of Photosystem II and decreases energy input to Photosystem II upon induction of state 2. The resulting increase in the absorption by Photosystem I favors cyclic electron flow and ATP production over linear electron flow to NADP and poises the system by slowing down the flow of electrons originating in Photosystem II.Cyclic electron transport may function to prevent photoinhibition to the photosynthetic apparatus as well as to provide ATP. Thus, under high light intensities where CO2 can limit photosynthesis, especially when stomates are closed as a result of water stress, the proton gradient established by coupled cyclic electron transport can prevent over-reduction of the electron transport system by increasing thermal de-excitation in Photosystem II (Weis and Berry 1987). Increased cyclic photophosphorylation may also serve to drive ion uptake in nutrient-deprived cells or ion export in salt-stressed cells.There is evidence in some plants for a specialization of Photosystem I. For example, in the red alga Porphyra about one third of the total Photosystem I units are engaged in linear electron transfer from Photosystem II and the remaining two thirds of the Photosystem I units are specialized for cyclic electron flow. Other organisms show evidence of similar specialization.Improved understanding of the biological role of cyclic photophosphorylation will depend on experiments made on living cells and measurements of cyclic photophosphorylation in vivo.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - cyt cytochrome - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD dicyclohexylcarbodiimide - DCHC dicyclohexyl-18-crown-6 - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FCCP carbonylcyanide 4-(trifluoromethoxy) phenylhydrazone - LHC light harvesting chlorophyll - LHCP II light harvesting chlorophyll protein of Photosystem II - PQ plastoquinone - PS I, II Photosystem I, II - SHAM salicyl hydroxamic acid - TBT Tri-n-butyltin CIW/DPB Publication No. 1146  相似文献   

11.
The antitranspirant activity of three inhibitors of cyclic photophosphorylation(2,4-dinitro-phenol, 2-chloromercuri-4,6-dinitrophenol, andsalicylaldoxime) on 6-week-old plants of Datura arborea wasexamined. The test compounds reduced transpiration and the effectpersisted for 12 d. The dry matter production by the plantswas not affected. The reduction in water loss was caused bystomatal closure. Inhibitors of cyclic photophosphorylation,by virtue of their prolonged action associated with a smalleffect on dry matter accumulation, may be useful as antitranspirants.  相似文献   

12.
2-Chloromercuri 4,6-dinitrophenol inhibited photosystem I mediated photochemical reactions of Euphorbia hirta chloroplasts. The compound inhibited cyclic photophosphorylation and NADP reduction (in the presence of dichlorophenol indophenol and ascorbate couple) at concentrations as low as 10?6m. At higher concentrations (above 10?4m), however, it affected all NADP reductions but still showed negligible effect on ferricyanide reduction or noncyclic photophosphorylation. The compound may be used as an inhibitor of cyclic photophosphorylation.  相似文献   

13.
光合作用被称为"地球上最重要的化学反应",其二氧化碳同化是由还原辅酶II(NADPH)和腺三磷(ATP)来推动的。ATP主要来源于非循环光合磷酸化和循环光合磷酸化,但以往研究集中在前者。21世纪以来,随着测定技术的发展和多条与循环光合磷酸化有关的电子传递途径的发现,循环光合磷酸化的重要性和功能引起了极大地关注。该文作者结合自己实验室的相关的研究,围绕循环光合磷酸化的发现和重要性、同化力两个组分的比例与促进光合磷酸化提高光合作用的途径进行探讨,为进一步深入研究提供参考。  相似文献   

14.
Narrow concentration intervals were used, covering 10?6– 10?4M desaspidin. The interaction with glycolysis involves three steps, the inhibitor constants (Ki:s) being in turn 2.7 × 10?5M, 1.3 × 10?4M, and high. About 18% of total glycolysis is inhibited in each of the two first steps, and 65% left for the third reaction. After compensation for glycolysis, oxidative phosphorylation may show a sudden jump to about 10% inhibition at 1.5 × 10?5M desaspidin, the possible Ki of the reaction starting here being very high. Correcting for glycolysis, desaspidin affects total Photophosphorylation in two steps, with the Ki values of 7.8 × 10?5M and 4.6 × 10?4M respectively. Inhibition in the first step is about 27% of the total photophosphorylation. By applying 10?6M DCMU[/3-(3, 4-dichlorophenyl)-l, l-dimethy lurea], one can abolish non-cyclic photophosphorylation. Desaspidin then reacts in a single step with a Ki of 1.4 × 10?4M. At 5 × 10?5M DCMU, also the pseudocyclic photophosphorylation is abolished. The remaining, true cyclic photophosphorylation has a single Ki of 2.3 × 10?5M for desaspidin. Under non-cyclic conditions, the true cyclic process contributes about 25% to total Photophosphorylation. Under pseudocyclic conditions, no cyclic photophosphorylation occurs. Under true cyclic conditions, the non-cyclic and pseudocyclic processes are inoperative. This indicates a regulative system, so that either (1) the (non-cyclic + true cyclic), (2) only the pseudocyclic, or (3) only the true cyclic systems can be traced, dependent on the level of DCMU applied. There are two sites for non-cyclic Photophosphorylation, one of them common to the pseudocyclic pathway. Cyclic photophosphorylation has a third site, different from the other two.  相似文献   

15.
The ATP levels in photophosphorylation, glycolysis and oxidative phosphorylation, in the unicellular green alga Scenedesmus obtusiusculus, were titrated with narrow concentration intervals of desaspidin in the presence of different concentrations of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), which allows the differentiation between non-cyclic, pseudocyclic and true cyclic photophosphorylation. The data on photophosphorylative ATP levels were compared with earlier data on total binding of phosphate. In the true cyclic process, both parameters are equally sensitive towards desaspidin. Under pseudocyclic conditions and in non-cyclic photophosphorylation, the level of ATP is more sensitive towards desaspidin than is total binding of phosphate. This suggests a structural difference between the cyclic and the two non-cyclic (one of which is also pseudocyclic) sites. The non-cyclic ATP level is more sensitive towards desaspidin than is pseudocyclic. This may be connected with the higher ATP level under pseudocyclic as compared to non-cyclic conditions.  相似文献   

16.
The influence of sodium azide on open-chain and flavine mononucleotide mediated cyclic photophosphorylation in isolated spinach chloroplasts was investigated under anaerobic conditions. Open chain phosphorylation was completely inhibited with DCMU both in the presence and absence of sodium azide in the experimental medium. Flavine mononucleotide mediated photophosphorylation was only slightly inhibited by DCMU in the absence of sodium azide but inhibited in two steps by increasing amounts of DCMU when sodium azide was present in the medium. The first step can be explained as being mainly an effect of DCMU on an open chain electron transport, with water and H2O2 as electron donors and with flavine mononucleotide — kept in an oxidized state by sodium azide — as the electron acceptor. The second step, as well as the comparatively insensitivity to DCMU in the absence of sodium azide, depends on cyclic photophosphorylation mediated by flavine mononucleotide.  相似文献   

17.
Levels of ferricyanide reduction, cyclic and non-cyclic photophosphorylation were measured in chloroplasts of two cultivars of pea and a comparison of their P/2e+ ratios were made. No differences were observed in cyclic photophosphorylation or ferricyanide reduction but non-cyclic photophosphorylation was lower in chloroplasts from the dwarf than the normal cultivar. Thus the P/2e+ ratio of the dwarf was lower than the normal. Dwarf seedlings treated with gibberellic acid (GA3) had similar rates of cyclic photophosphorylation as the untreated dwarf but non-cyclic photophosphorylation was lower as was ferricyanide reduction. This resulted in P/2e+ ratios that were higher in chloroplasts from the GA3 treated dwarf seedlings than the untreated, and were the same as the untreated normal. Addition of GA3 directly to the chloroplasts did not alter the activity in any way. Hence gibberellins do not directly affect changes in chloroplastic activity but may conceivably be involved in a feed-back control system.  相似文献   

18.
Membrane preparations isolated from the photosynthetic lamellae of the cyanobacterium Plectonema boryanum generate upon illumination a transmembrane pH gradient of approximately 2 to 3 pH units (acid inside), as determined from the distribution of either fluorescent or radioactive amines (9 aminoacridine and [14C]methylamine, respectively). Using the distribution of permeant ions to measure the electrical potential across the membrane, it was found that the latter is practically nil under conditions in which the deltapH is formed and photophosphorylation takes place. In agreement with the above findings cyclic photophosphorylation in this membrane preparation is inhibited by agents shown to collapse the deltapH but not by agents which should collapse the electrical potential. It is deduced that the pattern of proton movement in the photosynthetic lamellae of intact Plectonema spheroplasts corresponds to that of the cell-free membrane system, as both preparations show similar light dependent accumulation of fluorescent amine. It is concluded that the pattern of energy transduction in Plectonema photosynthetic lamellae is similar to that of chloroplast thylakoid membranes and not to that of bacterial cytoplasmic membranes. The evolutionary implications of the findings are discussed and a model for the directionality of H+ movements in the whole cell is presented.  相似文献   

19.
20.
Jane Koukol  W. M. Dugger  Jr.    R. L. Palmer 《Plant physiology》1967,42(10):1419-1422
The inhibitory effect of peroxyacetyl nitrate on the cyclic photophosphorylation of chloroplasts isolated from Black Valentine variety bean leaves (Phaseolis vulgaris L.) has been studied. Peroxyacetyl nitrate caused inhibition to photophosphorylation, in either the dark or the light, by affecting the chloroplast. Evidence is presented which suggests that peroxyacetyl nitrate could oxidize sulfhydryl groups on enzymes necessary for photophosphorylation. The inhibition to photophosphorylation caused by peroxyacetyl nitrate cannot be reversed by glutathione, even when added in large amounts, whereas the inhibition to photophosphorylation caused by para-chloromercuriphenylsulfonic acid is easily reversed by small quantities of glutathione. This suggests that if peroxyacetyl nitrate is oxidizing sulfhydryl groups necessary for photophosphorylation, this oxidation is proceeding beyond the disulfide state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号