首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Homoserine dehydrogenases and aspartokinases in l-threonine- or l-threonine and l-lysine-producing mutants derived from Corynebacterium glutamicum KY 9159 (Met?) were studied with respect to the sensitivity to the inhibition by end products, l-threonine and l-lysine. The activities of homoserine dehydrogenases in the mutants which produced l-threonine or l-threonine and l-lysine were slightly less susceptible to the inhibition by l-threonine than the activity in the parent strain, KY 9159. The aspartokinases in the threonine-producing mutants, KY 10484 and KY 10230, which were resistant to α-amino-β-hydroxylvaleric acid (AHV, a threonine analog) and more sensitive to thialysine (a lysine analog) than the parent, were sensitive to the concerted feedback inhibition by l-lysine and l-threonine by about the same degree as KY 9159. The aspartokinase in an AHV- and thialysine-resistant mutant, KY 10440, which was derived from KY 10484 and produced about 14 mg/ml of l-threonine in a medium containing 10% glucose was less susceptible to the concerted feedback inhibition than KY 10484 or KY 9159, although the activity was still under the feedback control. In the parent strain, l-threonine activated aspartokinase activity in the absence of ammonium sulfate, an activator of the enzyme, but partially inhibited the activity in the presence of the salt. On the other hand, the enzyme of KY 10440 was activated by l-threonine either in the presence or in the absence of the salt. In another AHV- and thialysine-resistant mutant, KY 10251, which was derived from KY 10230 and produced both 9 mg/ml of l-threonine and 5/5 mg/ml of l-lysine, l-threonine and l-lysine simultaneously added hardly inhibited the activity of aspartokinase.

Implications of these results are discussed in relation to l-threonine or l-lysine production, AHV or thialysine resistance and regulation of l-threonine biosynthesis in these mutants.  相似文献   

2.
Two types of l-isoleucine producing mutants were derived from l-threonine producers by the supplement of the resistance to ethionine.

Main control site in l-isoleucine biosynthetic pathway after threonine is threonine dehydratase. In case of Brevibacterium flavum No. 14083, l-isoleucine production was based on the insensitiveness of this key enzyme to feedback inhibition by l-isoleucine. As regards Brevibacterium flavum No. 168, it was based on the increase in the specific activity of this enzyme.

The former produced 11.3 g/liter of l-isoleucine and the latter produced 9.92 g/liter from glucose. The former showed a vigorous ability of acetic acid assimilation, but the latter did not.  相似文献   

3.
Two auxotrophic mutants of Escherichia coli have been shown to accumulate significant amounts of l-threonine in the culture medium. One mutant, 13071, is deficient in α,ε-diaminopimelic acid (DAP), and the other, 13070, is deficient in both DAP and methionine.  相似文献   

4.
Corynebacterium glutamicum mutants carrying both auxotrophy and histidine analog-resistance were derived by a mutagenic treatment, and their histidine productivity was compared with that of a triazolealanine (TRA)-resistant histidine producer, C. glutamicum KY-10260. As a result, a leucine auxotrophic TRA-resistant mutant, Rα-88 was selected out of 164 auxotrophic derivatives of KY-10260. It produced histidine at a distinctly higher concentration than the parent strain under every condition tested. The concentration reached 11 mg/ml or 5.8% (w/w) of the initial sugar. Addition of an excessive amount of leucine to the medium inhibited the histidine production together with the by-production of valine by this mutant. Thiazolealanine-resistant mutants derived from a tyrosine auxotroph, a phenylalanine auxotroph and a tryptophan auxotroph gave the same or lower production in comparison with KY-10260.  相似文献   

5.
p-Fluorophenylalanine (PFP) and m-fluorophenylalanine were the most effective inhibitors on the growth of Corynebacterium glutamicum ATCC 13032 among the analogs of phenylalanine and tyrosine tested. Their inhibitory effects were released by L-phenylalanine, and slightly by L-tyrosine and L-tryptophan. 3-Aminotyrosine (3AT), p-aminophenylalanine, o-fluorophenylalanine, and β-2-thienylalanine were weak inhibitors.

Resistant mutants of C. glutamicum isolated on the medium containing both PFP and 3AT or PFP and L-tyrosine were found to accumulate both L-tyrosine and L-phenylalanine, while resistant mutants isolated on the medium containing only PFP were found to produce only L-phenylalanine. Resistant mutants from other glutamic acid producing bacteria isolated on the medium containing both PFP and 3AT or both PFP and L-tyrosine were found to accumulate L-tyrosine and L-phenylalanine.  相似文献   

6.
A thiaisoleucine-resistant mutant, ASAT–372, derived from a threonine producer of Corynebacterium glutamicum, KY 10501, produced 5 mg/ml each of l-isoleucine and l-threonine. l-Isoleucine productivity of ASAT–372 was improved stepwise, with concurrent decrease in threonine production, by successively endowing it with resistivity to such substances as ethionine, 4-azaleucine and α-aminobutyric acid. The mutant strain finally selected, RAM–83, produced 9.7 mg/ml of l-isoleucine with a medium containing 10% (as sugar) molasses.

l-Isoleucine production was significantly affected by the concentration of ammonium sulfate in the fermentation medium. At 4% ammonium sulfate l-isoleucine production was enhanced whereas l-threonine production was suppressed. At 2% ammonium sulfate l-threonine production was stimulated while l-isoleucine production decreased.  相似文献   

7.
Mutants resistant to various phenylalanine- or tyrosine-analogs were isolated from a phenylalanine auxotroph of Corynebacterium glutamicum KY 10233 by treatment with N- methyl-N′-nitro-N-nitrose guanidine (NTG) and screened for L-tyrosine production. A mutant, 98–Tx–71, which is resistant to 3-aminotyrosine, p-aminophenylalanine, p-fluoro-phenylalanine, and tyrosine hydroxamate was found to produce L-tyrosine at a concentration of 13.5 mg/ml in the cane molasses medium containing 10% of sugar calculated as glucose. A tyrosine-sensitive mutant, pr–20 which was derived from 98–Tx–71 produced L-tyrosine at a concentration of 17.6 mg/ml. L-Tyrosine formation in the strain pr–20 was found to be still inhibited by L-phenylalanine though it was not inhibited by L-tyrosine. The L-tyrosine formation in the mutant was repressed neither by L-phenylalanine nor by L-tyrosine.  相似文献   

8.
Great Boiling Spring is a large, circumneutral, geothermal spring in the US Great Basin. Twelve samples were collected from water and four different sediment sites on four different dates. Microbial community composition and diversity were assessed by PCR amplification of a portion of the small subunit rRNA gene using a universal primer set followed by pyrosequencing of the V8 region. Analysis of 164 178 quality-filtered pyrotags clearly distinguished sediment and water microbial communities. Water communities were extremely uneven and dominated by the bacterium Thermocrinis. Sediment microbial communities grouped according to temperature and sampling location, with a strong, negative, linear relationship between temperature and richness at all taxonomic levels. Two sediment locations, Site A (87–80 °C) and Site B (79 °C), were predominantly composed of single phylotypes of the bacterial lineage GAL35 (p̂=36.1%), Aeropyrum (p̂=16.6%), the archaeal lineage pSL4 (p̂=15.9%), the archaeal lineage NAG1 (p̂=10.6%) and Thermocrinis (p̂=7.6%). The ammonia-oxidizing archaeon ‘Candidatus Nitrosocaldus'' was relatively abundant in all sediment samples <82 °C (p̂=9.51%), delineating the upper temperature limit for chemolithotrophic ammonia oxidation in this spring. This study underscores the distinctness of water and sediment communities in GBS and the importance of temperature in driving microbial diversity, composition and, ultimately, the functioning of biogeochemical cycles.  相似文献   

9.
Summary The production of antimicrobial substances was studied among 195 bacterial isolates from retail table olives. A total 86 isolates tested positive, and they clustered in 10 groups according to their inhibitory spectra. Many isolates (38.37%) produced strong inhibition against all bacteria tested (Listeria innocua, Lactococcus lactis, Bacillus cereus, B. megaterium, Staphylococcus aureus, Micrococcus luteus, Enterococcus faecalis, and Escherichia coli). The selected bacterial isolates were Gram-positive bacteria with rod morphology (62.67%), short rods (26.65%) or cocci (10.67%). Isolates producing antimicrobial substances may be useful as starters to enhance control of table olive fermentation and improve the safety of retail table olives.  相似文献   

10.
对解淀粉乳酸细菌及其产生的淀粉酶和发酵工艺等方面的国内外研究现状进行了综述。解淀粉乳酸细菌具有分泌淀粉酶的能力,可免去原料水解处理工序直接发酵淀粉质原料生产乳酸,可以简化生产工艺,并可节约设备投资,进而降低生产成本。解淀粉乳酸细菌主要分离自传统发酵食品,也可从有机废弃物和厨余垃圾中分离得到。介绍了解淀粉乳酸细菌直接利用淀粉质原料的机理,比较了解淀粉乳酸菌发酵生产L-乳酸的工艺。提出通过诱变育种和基因工程育种等方法获得更加高效的解淀粉乳酸细菌,并结合先进的发酵、分离技术来提高乳酸生产效率。  相似文献   

11.
12.
Aims: This study aimed to analyse microbiota of the fermented food ‘narezushi’, an archetype of modern Japanese sushi. The pyrosequencing technique was used to analyse sequences of 16S ribosomal DNA contained in six narezushi products. Methods and Results: The V1‐V2 regions of the 16S ribosomal DNA were amplified from different narezushi products using PCR, and approximately 120 000 sequences were phylogenetically assigned at the genus level, using the Ribosomal Database Project classifier. In all samples, the microbial populations consisted of more than 90% Lactobacillales, mainly Lactobacillus or Pediococcus, reflecting their crucial role in narezushi fermentation. There were more than 700 operational taxonomy units in all samples, with Shannon–Wiener index varying from 1·69 to 2·60. Conclusions: The microbiota of all narezushi products were shown to consist largely of Lactobacillales populations. Interestingly, different species were found to be dominant in each product. Significance and Impact of the Study: This study provides an insight into the bacterial composition of fermented fish‐based foods, which are consumed worldwide. Significant differences in the dominant species were observed between products, possibly because of the starter‐free production process.  相似文献   

13.
The distribution of lipoprotein lipase activity in microorganisms was examined, Rhizopus japonicus KY 521 showed the highest activity of lipoprotein lipase in the culture fluid among microorganisms tested, Lipase was also excreted in addition to lipoprotein lipase by this organism. The effect of cultural conditions on the extracellular production of the two lipases by this organism was investigated. The addition of phospholipid such as lecithin brought about a remarkable increase in the extracellular production of both lipases. It was found that lecithin did not increase significantly the net synthesis of the enzyme, but accelerated the secretion of the enzyme formed in the mycelium into the culture medium.  相似文献   

14.
The growth of Brevibacterium flavum No. 2247 was inhibited over 90% at a concentration above 1 mg/ml of α-amino-β-hydroxyvaleric acid, a threonine analogue, and the inhibition was reversed by the addition of l-threonine, and to lesser extent by l-leucine, l-isoleucine, l-valine and l-homoserine. l-Methionine stimulated the inhibition. Several mutants resistant to the analogue produced l-threonine in the growing cultures. The percentage of l-threonine producer in the resistant mutants depended on the concentration of the analogue, to which they were resistant. The best producer, strain B-183, was isolated from resistant strains selected on a medium containing 5 mg/ml of the analogue. Mutants resistant to 8 mg/ml of the analogue was derived from strain B-183 by the treatment with mutagen, N-methyl-N’-nitro-N-nitrosoguanidine. Among the mutants obtained, strain BB-82 produced 13.5 g/liter of l-threonine, 30% more than did the parental strain. Among the resistant mutants obtained from Corynebacterium acetoacidophilum No. 410, strain C-553 produced 6.1 g/liter of l-threonine. Several amino acids other than l-threonine were also accumulated, and these accumulations of amino acids were discussed from the view of regulation mechanism of l-threonine biosynthesis.  相似文献   

15.
l-Threonine production by strain BB-69, which was derived from Brevibacterium flavum No. 2247 as a α-amino-β-hydroxyvaleric acid resistant mutant and produced about 12 g/liter of l-threonine, was reduced by the addition of l-lysine or l-methionine in the culture medium. Many of lysine auxotrophs but not methionine auxotrophs derived from strain B–2, which produced about 7 g/liter of l-threonine, produced more l-threonine than the parental strain. Except only one methionine auxotroph (BBM–21), none of lysine and methionine auxotrophs derived from BB–69 produced more l-threonine than the parental strain. Homoserine dehydrogenase of crude extract from strain B–2 was inhibited by l-threonine more strongly than that from BB–69. Strain BBM–21, a methionine auxotroph derived from BB–69, produced about 18 g/liter of l-threonine, 50% more than BB–69, while accumulation of homoserine decreased remarkably as compared with BB–69. l-Threonine production by BBM–21 was increased by the addition of l-homoserine, a precursor of l-threonine, while that by BB–69 was not. No difference was found among BBM–21, BB–69 and No. 2247 in the degree of inhibition of homoserine kinase by l-threonine. l-Threonine production by revertants of BBM–21, that is, mutants which could grow without methionine, were all lower than that of BBM–21. Correlation between l-threonine production and methionine or lysine auxotrophy was discussed.  相似文献   

16.
l-Threonine producing α-amino-β-hydroxyvaleric acid resistant mutants were derived from E. coli K-12 with 3 x 10-5 frequency. One of mutants, strain β-101, accummulated maximum amount of l-threonine (1. 9 g/liter) in medium. Among isoleucine, methionine and lysine auxotrophs derived from E. coli K-12, only methionine auxotrophs produced l-threonine. In contrast, among isoleucine, methionine and lysine auxotrophs derived from β-101, l-threonine accumulation was generally enhanced in isoleucine auxotrophs. One of isoleucine auxotrophs, strain βI-67, produced maximum amount of l-threonine (4. 7 g/liter). Methionine auxotroph, βM-7, derived from β-101 produced 3.8 g/liter, and βIM-4, methionine auxotroph derived from β1-67, produced 6.1 g/liter, when it was cultured in 3% glucose medium supplemented with 100 μg/ml of l-isoleucine and l-methionine, respectively. These l-threonine productivities of E. coli mutants were discussed with respect to the regulatory mechanisms of threonine biosynthesis. A favourable fermentation medium for l-threonine production by E. coli mutants was established by using strain βM-4.  相似文献   

17.
液质发酵食品发酵过程中微生物组成复杂,复杂的微生物发酵体系会影响微生物的生长和代谢,继而改变微生物的群落结构与功能,最终影响液质发酵食品的品质.乳酸菌在食品发酵中对形成风味物质、提高营养价值、抑制腐败菌生长具有重要的作用.本文主要对近年来食醋、酱油和饮料酒等液质发酵食品中微生物群落及与乳酸菌间相互作用关系进行综述,了解...  相似文献   

18.
The use of length-heterogeneity PCR was explored to monitor lactic acid bacteria succession during ensiling of maize. Bacterial diversity was studied during the fermentation of 30-day-old maize in optimal and spoilage-simulating conditions. A length heterogeneity PCR profile database of lactic acid bacteria isolated from the silage and identified by 16S rRNA gene sequencing was established. Although interoperonic 16S rRNA gene length polymorphisms were detected in some isolates, strain analysis showed that most of the lactic acid bacteria species thriving in silage could be discriminated by this method. The length heterogeneity PCR profiles of bacterial communities during maize fermentation were compared with those on a database. Under optimal fermentation conditions all the ecological indices of bacterial diversity, richness and evenness, deduced from community profiles, increased until day thirteen of fermentation and then decreased to the initial values. Pediococcus and Weissella dominated, especially in the first days of fermentation. Lactococcus lactis ssp. lactis and Lactobacillus brevis were mainly found after six days of fermentation. A peak corresponding to Lactobacillus plantarum was present in all the fermentation phases, but was only a minor fraction of the population. Unsuitable fermentation conditions and withered maize leaves in the presence of oxygen and water excess caused an enrichment of Enterococcus sp. and Enterobacter sp.  相似文献   

19.
20.
Methionine auxotrophs were derived by the treatment with ultraviolet ray or N-methylN′-nitro-N-nitrosoguanidine from five strains of Escherichia coli. One of the methionine auxotrophs of E. coli C-6, strain No. 15, produced maximum amount of l-threonine (4.3 mg/ml) with the medium containing 5 % cane-molasses (as sugars). Double auxotrophs were derived with further mutational treatment from strain No. 15. It was found that l-threonine production was greatly enhanced by cultivating methionine-valine auxotrophs in the presence of l-valine and methionine. o.ne of the methionine-valine auxotroph, strain No. 234, produced maximum amount of l-threonine (10.5 mg/ml) from cane-molasses.

The requirement of l-valine for the growth of the strain No. 234 was found to be leaky, and it was suggested that some enzymes relating to l-valine metabolism were mutationally altered to temperature-sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号