首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida tropicalis pK 233 exhibited marked morphological changes depending upon carbon sources for growth. Although the yeast showed a typical yeast-like development when grown on glucose, the cells grown on hydrocarbon or ethanol were composed of a mixture of filamentous-form (F-cells) and yeast-form cells (Y-cells). The carbon chain lengths of n-alkanes tested as growth substrates had a significant influence on the ratio of F-cells to Y-cells. Electronmicroscopic observation revealed that a hypha was divided by septa into several cells.

Separation of Y-cells and F-cells was achieved by using a suitable filter cloth. F-cells gave a high Qo2 value compared with Y-cells when hydrocarbon was used as oxidation substrate, even though there was little difference between the respiratory activities of these two cells measured with glucose.  相似文献   

2.
Isocitrate lyase was purified partially from n-alkane-grown cells and glucose-grown cells of Candida tropicalis by means of ammonium sulfate fractionation and DEAE-cellulose column chromatography. The preparation from alkane-grown cells showed one peak of the enzyme activity, while that from glucose-grown cells showed two distinct peaks of the activity, on DEAE-cellulose column chromatography. These enzymes, having the similar pH optima (around 7.0) and Km values with dl-isocitrate (1.2 ~ 1.7 mm), were inhibited by various metabolic intermediates, such as 6-phosphogluconate and phosphoenolpyruvate.

Time-course changes in the activities of isocitrate lyase and isocitrate dehydrogenases of C. tropicalis during the growth indicated that the lyase would participate preferentially in alkane assimilation and NAD-linked isocitrate dehydrogenase in glucose utilization of the yeast.

Regulation of isocitrate metabolism in C. tropicalis through glyoxylate cycle and tricarboxylic acid cycle is discussed based on the kinetic properties, cellular localization and time- course changes in the levels of isocitrate lyase and NAD-linked and NADP-linked isocitrate dehydrogenases.  相似文献   

3.
Cellular fatty acid compositions of Candida tropicalis pK 233 and Candida lipolytica NRRL Y -6795 and the time-course changes during yeast growth were studied using individual n-alkanes of various chain lengths (from C11 to C18) and a mixture of n-alkanes (C11 to C18) as a sole carbon source. Observed relationships of the chain-length of n-alkane substrate to time-course changes and final patterns of the fatty acid compositions of these yeasts, especially those of the cells grown on odd-carbon alkanes, indicated that “intact incorporation mechanism,” that is, accumulation of the fatty acid having the same chain-length as that of the alkane substrate used was predominant in the yeasts cultivated on a longer alkane such as n-heptadecane and n-octadecane. On the other hand, “chain elongation pathway” and “de novo synthesis pathway” following β-oxidation of substrate were simultaneously operative in the cells growing on a relatively shorter alkane such as undecane and dodecane.  相似文献   

4.
In Candida tropicalis cells grown on n-alkanes (C10-C13), the levels of the activities of the enzymes related to fatty acid β—oxidation—acyl-CoA oxidase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-ketoacyl-CoA thiolase—were found to be higher than those in cells grown on glucose, indicating that these enzymes were induced by alkanes. The enzymes were first confirmed to be localized only in peroxisomes, while none of these enzymes nor acyl-CoA dehydrogenase, which is known to participate in the initial step of mitochondrial β-oxidation in mammalian cells, were detected in yeast mitochondria under the conditions employed.

The significance of the peroxisomal β-oxidation system in the metabolism of alkanes by the yeast was also discussed.  相似文献   

5.
The catalase activities of the Candida cells grown on hydrocarbons were generally much higher than those of the cells grown on Iauryl alcohol, glucose or ethanol. Km values for hydrogen peroxide of the enzymes from the glucose- and the hydrocarbon-grown cells of Candida tropicalis were the same level. The enzyme activities of the yeasts were higher at the exponential growth phase, especially of the hydrocarbon-grown cells, than at the stationary phase. Profuse appearance of microbodies having homogeneous matrix surrounded by a single-layer membrane has also been observed electronmicroscopically in the hydrocarbon- grown cells of several Candida yeasts. Cytochemical studies using 3,3′-diaminobenzidine (DAB) revealed that the catalase activity was located in microbodies. These facts suggest that the catalase activities would be related to the hydrocarbon metabolism in the yeasts.  相似文献   

6.
Summary Candida albicans KTCC 89062 grown on n-alkanes showed higher levels of sterol content as compared to glucose-grown cells. Certain sterols, such as lanosterol, were significantly reduced in cells grown on n-alkanes, while others, such as ergosterol, increased in these cells. Sterol fractions declined as the chain length of the n-alkanes increased. Ergosterol supplementation of the chemically defined medium showed an increase in the uptake of dodecane (C12) by cells grown on such medium. Increase in the concentration of ergosterol supplementation resulted in an increase in C12 uptake. The uptake of C12 was not stimulated by ergosterol supplementation in the case of non-viable yeast cells.  相似文献   

7.
The surface structure of the hypdrocarbon-utilizing yeast Candida tropicalis was investigated by scanning and transmission electron microscopy (SEM and TEM respectively). The sample preparation technique was based on a rapid cryofixation without any addition of cryoprotectants. In subsequently freeze-dried samples the surface structure was analysed by scanning electron microscopy. Thin sections were prepared from freeze substituted samples. Both techniques revealed hair-like structures at the surface of hydrocarbon-grown cells. The hairy surface structure of the cells was less expressed in glucose-grown cells and it was absent completely after proteolytic digestion of the cells. When cells were incubated with hexadecane prior to cyryofixation a contrast-rich region occured in the hair fringe of thin sections as revealed by TEM. Since these structures were characteristic for hexadecane-grown cells and could not be detected in glucose-grown or proteasetreated cells it was concluded that they originate from hexadecane adhering to the cell surface and are functionally related to hexadecane transport. The structure of the surface and its relation to hydrocarbon transport are discussed in view of earlier results on the chemical composition of the surface layer of the cell wall.Abbreviations SEM Scanning electron microscopy - TEM transmission electron microscopy  相似文献   

8.
Summary The yeast Candida maltosa precultivated on liquid n-alkanes utilized different solid n-alkanes (especially C20–C25) in the presence of pristane as an organic phase with rates comparable to, or somewhat larger than, those of liquid n-alkanes. Analysis of cellular fatty acids indicated an assimilation of solid n-alkanes via monoterminal oxidation. The resulting fatty acids with substrate chain length were chain-shortened by C2 units down to an optimal range of chain length from C16 to C18 and incorporated into cellular, lipids directly or after desaturation. The intermediates of chain-shortening with numbers of carbon atoms higher than C18, as well as the unusually long-chain fatty acids of substrate chain length, were detected in trace amounts only. Even-carbon-numbered and odd-numbered fatty acids predominated in experiments with evenchain and odd-chain n-alkanes, respectively. Studies with cerulenin indicated that de novo synthesis of fatty acids was negligible. Oxidation of solid n-alkanes by the yeast C. maltosa yielded fatty acid patterns similar to those of cells grown on liquid n-alkanes.  相似文献   

9.
A stable mixed yeast culture designated as Culture 4, consisting of Candida intermedia and Candida lipolytica was investigated. The culture was judged stable based on uniformity of fermentation results and the nearly constant ratio of the two organisms at the completion of fermentations. However, the ratio of the two organisms at different times during the fermentation was not determined. The mixed culture grew more rapidly on n-alkanes than did C. intermedia; C. lipolytica did not grow on unsupplemented mineral salt–n-alkane medium. Solid n-alkanes were dissolved in 2,6,0,14-tetramethylpentadecane (pristane) for investigation as carbon sources. With Culture 4, on n-alkanes ranging from pentadecane (C15) through octacosane (C28), cell yields were 74.2–89.5%; generation times were 3.0–8.0 hr. during the exponential growth phase. The fastest growth rates and highest cell yields were obtained with docosane (C22) as substrate. The cells obtained contained 6.75–8.81% nitrogen and 1.9–13.4% lipid. Crude protein yields were 34.4–47.6%. The oxidation of n-alkanes by C. intermedia was studied manometrically with resting whole cells. The alkaneoxidizing system of this organism appears to be constitutive and nonspecific for alkane substrates.  相似文献   

10.
Preparations of membrane fractions from 16 yeasts and three moulds were assayed for long-chain fatty alcohol oxidase (FAOD) activities after being grown on hexadecane or glucose and, in nine cases, on oleic acid. The enzyme was usually repressed in glucose-grown cells but in Candida bombicola ATCC 22 214 and Debaryomyces hansenii NCYC 33 appeared to be constitutive. Highest activities occurred in C. tropicalis and D. polymorphus (about 0.8 unit/mg protein) grown on hexadecane. Growth of yeasts on oleic acid partially induced FAOD activity but not with the moulds. In two strains of Yarrowia lipolytica (DSM 3286 and CBS 2076) no activity of FAOD was found but this could have been due to the known photo-lability of the enzyme. FAOD from different species shared similar characteristics with respect to substrate specificity and pH optimum. Correspondence to: C. Ratledge  相似文献   

11.
Long-chain alcohol dehydrogenase and longchain aldehyde dehydrogenase were induced in the cells of Candida tropicalis grown on n-alkanes. Subcellular localization of these dehydrogenases, together with that of acyl-CoA synthetase and glycerol-3-phosphate acyltransferase, was studied in terms of the metabolism of fatty acids derived from n-alkane substrates. Both longchain alcohol and aldehyde dehydrogenases distributed in the fractions of microsomes, mitochondria and peroxisomes obtained from the alkane-grown cells of C. tropicalis. Acyl-CoA synthetase was also located in these three fractions. Glycerol-3-phosphate acyltransferase was found in microsomes and mitochondria, in contrast to fatty acid -oxidation system localized exclusively in peroxisomes. Similar results of the enzyme localization were also obtained with C. lipolytica grown on n-alkanes. These results suggest strongly that microsomal and mitochondrial dehydrogenases provide long-chain fatty acids to be utilized for lipid synthesis, whereas those in peroxisomes supply fatty acids to be degraded via -oxidation to yield energy and cell constituents.  相似文献   

12.
The influence of pH, temperature, substrate transfer, and metabolic inhibitors on the uptake rate of hexadecane byCandida tropicalis was assessed. The uptake rate was little affected by the pH in the range from 4.0 to 8.0 but no uptake was observed at temperatures above 45°C. Inhibitors of respiration inhibited the utilization of hexadecane strongly. The uptake rate of hexadecane was depending on the shaking intensity applied in the assay and the initial substrate-to-cell concentration ratio. The influence of both parameters in the kinetics of the accumulation of hexadecane-1-14C-derived radioactivity in the cells was elaborated, defining the limitations of uptake by extracellular substrate transfer.  相似文献   

13.
Intracellular localization of several enzymes related to tricarboxylic acid cycle was investigated during the aerobic growth of Candida tropicalis on acetate, n-alkane and glucose. NADP-linked isocitrate dehydrogenase in acetate-grown cells was mostly found in S2 fraction (20,000 × g supernatant fraction of protoplast lysate), whereas more than half of this activity in n-alkane-grown cells was recovered in P2 fraction (20,000 × g pellet fraction). Large parts of NAD-linked isocitrate dehydrogenase and malate dehydrogenase were present in P2 fraction, while NADP- and NAD-linked glutamate dehydrogenases were found preferentially in S2 fraction, irrespective of the growth substrates used. Isocitrate lyase was detected in both fractions. Citrate synthase and aconitase in acetate-grown cells were almost particulate. Catalase activity recovered in P2 fraction was far higher in alkane-grown cells than in acetate- or glucose-grown cells.  相似文献   

14.
Several pieces of evidence indicate that Microcoleu chthonoplastes and Phormidium corium, the predominant cyanobacteria in microbial mats on crude oil polluting the Arabian Gulf coasts, contribute to oil degradation by consuming individual n-alkanes. Both cyanobacteria grew phototrophically better in the presence of crude oil or individual n-alkanes than in their absence, indicating that hydrocarbons may have been utilized. This result was true when growth was measured in terms of dry biomass, as well as in terms of the content of biliprotein, the accessory pigment characteristic of cyanobacteria. The phototrophic biomass production by P. corium was directly proportional to the concentration of n-nonadecance (C19) in the medium. The chlorophyll to carotene ratio of hydrocarbon-grown cyanobacteria did not decrease compared to the ratio in the absence of hydrocarbons, indicating that on hydrocarbons the organisms were not stressed. Comparing the fatty acid patterns of total lipids from hydrocarbon-grown cyanobacteria to those of the same organisms grown without hydrocarbons confirms that n-alkanes were taken up and oxidized to fatty acids by both cyanobacteria.  相似文献   

15.
Many strains of yeast which can utilize n-alkanes as the sole source of carbon were isolated from flowers and fruits. Among them, a strain, OH23, identified as Candida tropicalis, formed acidic substances from n-alkanes. The principal products from n-alkanes with odd and even numbers of carbons were identified as glutaric and adipic acids, respectively. The culture conditions for their formation were investigated. n-Pentadecane and n-hexadecane were the best substrates for the formation of glutaric and adipic acids, respectively. Yields of 170 mg of glutaric and 64 mg of adipic acid were obtained from 100 ml of media containing 4% (v/v) n-pentadecane and n-hexadecane, respectively, and 0.5% casamino acids.  相似文献   

16.
The substrate specificity of two yeast strains utilizing hydrocarbons   总被引:1,自引:0,他引:1  
StrainsCandida lipolytica 4-1 andCandida lipolytica K were compared in their growth and dawaxing capacities during batch growth on model gas oil. The model gas oil was composed of a mixture of even-numbered puren-alkanes (n-decane ton-dotriacontane) dissolved in dewaxed gas oil. The results show that both strains differ in their substrate specificity and in the sequence of utilization of individualn-alkanes. Strain K, previously used for dewaxing of mineral oil, has its substrate specificity shifted toward the highern-alkanes.  相似文献   

17.
Lysosomal acid proteinase of rabbit liver   总被引:23,自引:15,他引:8       下载免费PDF全文
1. The interference mechanism of carbonyl cyanide m-chlorophenylhydrazone with the respiratory process and with phosphorylation coupled to respiration has been investigated in resting cells of Escherichia coli. 2. Preincubation of the cells with carbonyl cyanide m-chlorophenylhydrazone in the absence of substrate caused strong inhibition of succinate oxidation. The inactivation of the respiratory system proved to be time-dependent and temperature-dependent and could be arrested by adding the substrate. Inhibition of incorporation of 32P into acid-soluble organic phosphate esters exceeded the inhibition of oxygen uptake. 3. In contrast with succinate, the rate of oxidation of glucose was increased by carbonyl cyanide m-chlorophenylhydrazone. The sensitivity of other substrates to the inhibitor was less than that of succinate. 4. Various observations are described in support of the view that respiratory inhibition induced by carbonyl cyanide m-chlorophenylhydrazone is a result of its interference with ATP synthesis. The capacity of a given substrate to increase intracellular ATP concentration appeared to be directly related to its resistance to inhibition. In cell-free extracts carbonyl cyanide m-chlorophenylhydrazone still suppressed 32P incorporation but had no effect on respiration. 5. Carbonyl cyanide m-chlorophenylhydrazone-induced stimulation of glucose oxidation and the acceleration of succinate oxidation by ADP or AMP in cells rendered permeable to nucleotides are tentatively interpreted as an indication that a certain part of respiration in E. coli is under phosphate-acceptor-mediated control.  相似文献   

18.
The variation of activities of several NADP-linked and NAD-linked dehydrogenases were studied during the aerobic growth of two species of hydrocarbon-utilizable Candida yeasts on different carbon and nitrogen sources. The level of NADP-linked isocitrate dehydrogenase in C. tropicalis and C. lipolytica growing on acetate was significantly higher than that in the yeasts growing on glucose. The glucose-grown cells of C. tropicalis showed a high activity of glucose-6-phosphate dehydrogenase as compared with the acetate-grown cells, while the enzyme level in C. lipolytica was low regardless of carbon sources used. The cells of both yeasts growing on n-alkane and oleic acid contained relatively low activity of NADP-linked isocitrate dehydrogenase. Presence of ion in the acetate medium increased the level of NADP-linked isocitrate dehydrogenase activity. These results suggest that different types of NADPH-generating systems operate alternatively in these yeasts depending upon carbon and nitrogen sources.  相似文献   

19.
The level of isocitrate lyase, an enzyme of glyoxylate cycle, in Candida tropicalis was enhanced at the later period of growth when the yeast was cultivated in a semisynthetic glucose medium. On the other hand, such increase in the enzyme activity was not observed in C. lipolytica grown under the same conditions. In the case of C. tropicalis, high concentrations of glucose remaining in the medium permitted the increase in the enzyme activity and the addition of ethanol, one of the major products from glucose, to the glucose medium did not stimulate the enzyme formation, indicating that the enhanced enzyme level in the yeast was not merely attributable to the release from the repression by glucose or to the induction by ethanol. Biotin, one of the growth-stimulating factors for C. tropicalis, affected markedly the level of isocitrate lyase. That is, the supplementation of biotin to the synthetic glucose medium inhibited completely the increase in the enzyme activity, and reversely the absence of biotin stimulated the enzyme formation in the glucose-assimilating cells. Thiamine, another growth-stimulating factor for C. tropicalis, did not show any effect on the level of isocitrate lyase in the yeast. The level of isocitrate lyase in C. lipolytica growing on glucose was not affected by biotin added exogenously.  相似文献   

20.
Microbodies appearing abundantly in n-alkane-grown cells of Candida tropicalis pK 233 were isolated by means of sucrose density gradient centrifugation. Electron microscopical observation showed that the microbodies isolated were intact. Localization of catalase and d-amino acid oxidase in the isolated microbodies was confirmed. Isocitrate lyase, malate synthase and NADP-linked isocitrate dehydrogenase were also located in the microbody, but malate dehydrogenase, citrate synthase, aconitase and NAD-linked isocitrate dehydrogenase were not. Neither cytochrome P-450 nor NADPH-cytochrome c reductase, the components involved in the n-alkane hydroxylation system of the yeast, were detected in the microbody fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号