首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to clarify the substrate specificity of the α-L-mannosidase activity of naringinase (Sigma), the following disaccharides and phenol glycosides were freshly prepared: methyl 2-O-(α-L-mannopyranosyl)­β-D-glucoside (1), methyl 3-O-(α-L-mannopyranosyl)-α-D-glucoside (2), methyl 4-O-(α-L-mannopyranosyl)-α-D-glucoside (3), methyl 5-O-(α-L-mannopyranosyl)-β-D-glucoside (4), methyl 6-O-(α-L-mannopyranosyl)-α-D­glucoside (5), 6-O-(α-L-mannpyranosyl)-D-galactose (6), p-nitrophenyl α-L-mannoside (7), and 4-methyl umbelliferone α-L-mannoside (8).These compounds, except for 3 and 5, were hydrolyzed with naringinase.  相似文献   

2.
Abstract

The efficient synthesis of oligonucleotides containing 2′-O-β-D-ribofuranosyl (and β-D-ribopyranosyl)nucleosides, 2′-O-α-D-arabinofuranosyl (and α-L-arabinofuranosyl)nucleosides, 2′-O-β-D-erythrofuranosylnucleosides, and 2′-O-(5′-amino-5-deoxy-β-D-ribofuranosyl)nucleosides have been developed.  相似文献   

3.
When Bacillus sp. K40T was cultured in the presence of L-fucose, 1,2-α-L-fucosidase was found to be produced specifically in the culture fluid. The enzyme was purified to homogeneity from a culture containing only L-fucose by chromatography on hydroxylapatite and chromatofocusing. The molecular weight of the enzyme was estimated to be 200,000 by gel filtration on Sephadex G-200. The enzyme was optimal at pH 5.5–7.0 and was stable at pH 6.0–9.0. The enzyme hydrolyzed the α(1 → 2)-L-fucosidic linkages in various oligosaccharides and glycoproteins such as lacto-N-fucopentaose (LNF)-I 〈O-α-L-fucose-(1 → 2)-O-β-D-galactose-(1 → 3)-N-acetyl-O-β-D-glucosamine-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉, porcine gastric mucin, and porcine submaxillary mucin. The enzyme also acted on human erythrocytes, which was confirmed by the hemagglutination test using Ulex anti-H lectin. The enzyme did not hydrolyze α(1 → 3)-, α-(1 → 4)- and α-(1 → 6)-L-fucosidic linkages in LNF-III 〈O-β-D-galactose-(1 → 4)[O-α-L-fucose-(1 → 3)-]-N-acetyl-O-β-D-glucosamine-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉, LNF-II 〈O-β-D-galactose-(1 → 3)[O-α-L-fucose-(1 → 4)-]-N-acetyl-O-β-D-galactose-(1 → 3)-O-β-D-galactose-(1 → 4)-D-glucose〉 or 6-O-α-L-fucopyranosyl-N-acetylglucosamine.  相似文献   

4.
This paper deals with the partial correction of our previous paper and with some new results in regard to ammonolysis of the epoxide ring of 2,3-anhydroribofuranoside derivatives.

Treatment of methyl 2,3-anhydro-5-deoxy-α-d-ribofuranoside, prepared from d-xylose, with ammonia gave methyl 2-amino-2,5-dideoxy-α-d-arabinoside and no methyl 3-amino-3,5-dideoxy-α-d-xyloside which we reported to obtain previously.

The exclusive attack of the nucleophilic reagent at C-2 is inconsistent with a result of C. D. Anderson et al. in regard to ammonolysis of methyl 2,3-anhydro-α-d-ribofuranoside.

In contrast to α-anomer, methyl 2,3-anhydro-5-deoxy-β-d-ribofuranoside gave mainly methyl 3-amino-3,5-dideoxy-β-d-xyloside. The difference of ammonolysis products between α- and β-anomer will be due to existence of steric hindrance.  相似文献   

5.
Hepta-O-acetyl-2-0-β-l-quinovopyranosyl-α-d-glucose (VI) and hepta-O-acetyl-2-O-α-l-quinovopyranosyl-β-d-gIucose (VIII) were prepared by the coupling of 2,3,4-tri-O-acetyl-α-l-quinovopyranosyl bromide (IV) with l,3,4,6-tetra-O-acetyl-α-D-glucose (V) in the presence of mercuric cyanide and mercuric bromide in absolute acetonitrile.

Similarly, hepta-O-acetyW-O-α-l-quinovopyranosyl-α-d-galactose (X) and hepta-O-acetyl-2-O-β-L-quinovopyranosyl-α-d-galactose (XI) were prepared by the reaction of IV with 1,3,4,6-tetra-O-acetyl-α-d-galactose (IX).

Removal of the protecting groups of VI, VIII, X and XI afforded the corresponding disaccharides. On treatment with hydrogen bromide, VI, VIII, X and XI gave the corresponding acetobromo derivatives.  相似文献   

6.
A growth factor (TJF) for a malo-lactic fermentation bacterium (Leuconostoc sp.) has been found to be 4′-O-(β-D-glucopyranosyl)-D-pantothenic acid with structural and synthetical studies. Now other 4′-O-glycosides (β-D-ribofuranosyl, α-D-glucopyranosyl, β-D-galacto-pyranosyl, β-maltosyl and β-cellobiosyl) and 2′,4′-O-di-β-D-glucopyranoside of DL-pantothenic acid, and 4′-O-β-D-glucopyranoside of DL-pantethine were synthesized to examine their biological activities. The improved syntheses of TJF were also examined.  相似文献   

7.
Benzyl 2, 3, 6-tri-O-acetyl-4-O-(2,3-di-O-acetyl-4,6-di-O-methylsulfonyl-β-d-glucopyranosyl)-β-d-glucopyranoside (VI) was prepared from α-cellobiose octaacetate. Displacement of the sulfonyl esters of VI with acyloxy-groups in N, N-dimethyl formamide in the presence of sodium benzoate gave 4-O-β-d-galactopyranosyl-d-glucopyranose derivative (lactose derivative). Elimination of blocking groups of the derivative yielded lactose hydrate (IX), though the overall yield of lactose from cellobiose octaacetate was less than 2%.  相似文献   

8.
Regioselective deacetylations of nine glycosides catalyzed by acetyl xylan esterase from Bacillus pumilus have been studied. The glycosides were methyl and benzyl glycosides of the tetraacetates of α-D-glucopyranose, α-D-galactopyranose and α-D-mannopyranose, and the methyl glycosides of tetra-O-acetyl-β-D-glucopyranose, tetra-O-acetyl-β-D-galactopyranose and tetra-O-acetyl-α-D-glucopyranose. The kinetics of successive deacetylations was monitored by GLC and 21 sugar acetates have been identified.  相似文献   

9.

Arabinosylation of some 4-amino- and 4-arylideneamino-5-(pyridin-3-yl)-2,4-dihydro-[1,2,4]-triazole-3-thiones with 2,3,4-tri-O-acetyl-β-L-arabinopyranosyl bromide led to an efficient synthetic approach to the corresponding N-and S-α-L-arabinopyranosides. Structure assignment of these two regiosiomers was based on chemical and spectroscopic evidences. Antimicrobial activities of two selected regioisomeric N-and S-α-L-arabinopyranosides were compared. The N-α-L-arabinopyranoside showed higher inhibitory effect than its regioisomeric S-α-L-arabinopyranoside against Aspergillus fumigatus, Penicillium italicum, Staphylococcus aureus, and Pseudomonas aeruginosa.  相似文献   

10.
Methyl 2,5-di-O-p-nitrobenzoyl-β-d-ribofuranoside was prepared via methyl 2,3-O-ethoxyethylidene-β-d-ribofuranoside from d-ribose. It was condensed with 3,4,6-tri-O-acetyl-2-deoxy-2-(2′,4′-dinitroanilino)-α-d-glucopyranosyl bromide and 3,4-di-O-acetyl-2,6-dideoxy-2-(2′,4′-dinitroanilino)-6-phthalimido-α-d-glucopyranosyl bromide by a modified Königs-Knorr reaction to give neobiosamine analogs. The condensation reaction gave α-glucosides as the minor product, and the corresponding β-glucoside as the major product.  相似文献   

11.
New synthetic methods for the preparation of 6-deoxy-1,2-O-isopropylidene-α-d-xylo-hexofuranos-5-ulse (VIa) were described.

Methyl 2,3,4-tri-O-benzoyl-6-deoxy-α-d-arabino-hex-5-enopyranoside (IIIa) was synthesized starting from methyl α-d-altroside (IIa). This enose derivative (IIIa) was hydrolyzed to methyl 6-deoxy-α-d-arabino-hex-5-enopyranoside (IIIb), and then converted with acid into 6-deoxy-d-arabino-hexofuranos-5-ulose (I), the sugar component of antibiotic hygromycin A.  相似文献   

12.
The antibiotic kanamycin was degraded with methanolic hydrogen chloride and was determined to be composed of three compounds: deoxystreptamine, 6-amino-6-deoxy-d-glucopyranose and 3-amino-3-deoxy-d-glucopyranose. From the chemical and physical data on the antibiotic and its fragments, kanamycin was shown to be O-α-6-amino-6-deoxy-d-glucopyranosyl-(1→4 or 6)-O-[α-3-amino-3-deoxy-d-glucopyranosyl-(1→6 or 4)]-1,3-diamino-1, 2, 3-trideoxy-myo-inositol.  相似文献   

13.
Chemical structures of pectic substances degraded by protopectinase-C (PPase-C) were characterized to identify the releasing mechanism of pectin from sugar beet protopectin by the action of that enzyme. The substrate of PPase-C was a polysaccharide isolated from sugar beet pulp by extraction with NaOH and sequential digestions with rhamnogalacturonase (PPase-T), β-1,4-D-galactanase, and α-L-arabinofuranosidase. The structure of this polysaccharide was analyzed by gas-liquid chromatography (GLC), NMR analysis, and gas chromatography-mass spectrometry (GC-MS), and it was identified as α-1,5-L-arabinan. According to our results, arabinan chains seemed to be connected to rhamnogalacturonan through a chain of β-l,4-D-galactan. PPase-C hydrolyzed both linear α-1,5-L-arabinan and ramified L-arabinan in a random manner, producing L-arabinose. From these results, PPase-C could be classified as arabinan endo-1,5-α-L-arabinase [EC 3.2.1.99]. Moreover, PPase-C seemed to split the L-arabinan of the polysaccharides connecting the rhamnogalacturonan to the other constituents of the plant cell wall in sugar beet pulp, releasing water-soluble pectin.  相似文献   

14.
The anti-diabetic effects of a kaempferol glycoside-rich fraction (KG) prepared from leaves of unripe Jindai soybean (Edamame) and kaempferol, an aglycone of kaempferol glycoside, were determined in genetically type 2 diabetic KK-Ay mice. The hemoglobin A1c level was decreased and tended to be decreased by respectively feeding KG and kaempferol (K). The area under the curve (AUC) in the oral glucose tolerance test (OGTT) tended to be decreased by feeding K and KG. The liver triglyceride level and fatty acid synthase activity were both decreased in the mice fed with KG and K when compared to those parameters in the control mice. These results suggest that KG and K would be useful to improve the diabetes condition. The major flavonoids in KG were identified as kaempferol 3-O-β-D-glucopyranosyl(1→2)-O-[α-L-rhamnopyranosyl(1→6)]-β-D-galactopyranoside, kaempferol 3-O-β-D-glucopyranosyl(1→2)-O-[α-L-rhamnopyranosyl(1→6)]-β-D-glucopyranoside, kaempferol 3-O-β-D-(2-O-β-D-glucopyranosyl) galactopyranoside and kaempferol 3-O-β-D-(2,6-di-O-α-L-rhamnopyranosyl) galactopyronoside, suggesting that these compounds or some of them may be concerned with mitigation of diabetes.  相似文献   

15.
Ultracentrifugically homogeneous glucomannan acetate derived from konjac mannan was subjected to acetolysis. Besides β-1,4-linked oligosaccharides composed of D-mannose and/or D-glucose, three oligosaccharides corresponding to the branching point of the polysaccharide were isolated and identified as (1) 3-O-β-D-mannopyranosyl-D-mannose, (2) O-β-D-mannopyranosyl-(1→4)-O-β-D-mannopyranosyl-(1→3)-D-mannose, and (3) O-β-D- mannopyranosyl-(1→3)-O-β-D-mannopyranosyl-(1→4)-D-glucose. The average chain length (CL) was, moreover, determined to be about 46 by methylation analysis. The structural pattern of the glucomannan, including the branching point, is discussed.  相似文献   

16.
Bacillus stearothermophilus CGTase had a wider acceptor specificity than Bacillus macerans CGTase did and produced large amounts of transfer products of various acceptors such as D-galactose, D-mannose, D-fructose, D- and L-arabinose, d- and L-fucose, L-rhamnose, D-glucosamine, and lactose, which were inefficient acceptors for B. macerans CGTase. The main component of the smallest transfer products of lactose was assumed to be α-D-glucosyl O-β-D-galactosyl-(l→4)-β-D-glucoside.  相似文献   

17.
Partial acid hydrolysis of asterosaponin A, a steroidal saponin, afforded two new disaccharides in addition to O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose which has been characterized in the preceding paper. The formers were demonstrated as O-(6-deoxy-α-d-galactopyranosyl)-(1→4)-6-deoxy-d-glucose and O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-6-deoxy-d-galactose, respectively.

Accordingly, the structure of carbohydrate moiety being composed of two moles each of 6-deoxy-d-galactose and 6-deoxy-d-glucose, was established as O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-galactopyranosyl)-(l→4)-O-(6-deoxy-α-d-glucopyranosyl)-(l→4)-6-deoxy-d-glucose, which is attached to the steroidal aglycone through an O-acetal glycosidic linkage.  相似文献   

18.
To investigate the substrate specificity of α-l-rhamnosidase from Aspergillus niger, the following seven substrates were synthesized: methyl 3-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (1), methyl 3-O-α-l-rhamnopyranosyl-α-l-xylopyranoside (2), methyl 3-0-α-l-rhamnopyranosyl-α-l-rhamnopyranoside (3), methyl 4-0-α-l-rhamnopyranosyl-α-d-galactopyranoside (4), methyl 4-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (5), methyl 4-0-α-l-rhamnopyra-nosyl-α-d-xylopyranoside (6), and 6-0-β-l-rhamnopyranosyl-d-mannopyranose (7). Compounds 1~6 were well-hydrolyzed by the crude enzyme, but 7 was unaffected.  相似文献   

19.
6-Deoxy-6-mcrcapto-α-d-glucosamine hydrochloride was synthesized from N-anisylidene-1,3,4-tri-O-acetyl-6-O-tosyl-β-d-glucosamine, and some of its properties were compared with those of α-d-glucosamine hydrochloride.  相似文献   

20.
Benzyl 6-O-β-D-xylopyranosyl-β-D-glucopyranoside (β-primeveroside) (1), 2-phenylethyl β-primeveroside (2), and 2-phenylethyl 6-O-α-L-rhamnopyranosyl-β-D-glucopyranoside (β-rutinoside) (3) were isolated as aroma precursors of benzyl alcohol and 2-phenylethanol from flower buds of Jasminum sambac Ait. The isolation was guided by an enzymatic hydrolysis and GC and GC-MS analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号