首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Regulatory properties of chorismate mutase from Corynebacterium glutamicum were studied using the dialyzed cell-free extract. The enzyme activity was strongly feedback inhibited by l-phenylalanine (90% inhibition at 0.1~1 mm) and almost completely by a pair of l-tyrosine and l-phenylalanine (each at 0.1~1 mm). The enzyme from phenylalanine auxotrophs was scarcely inhibited by l-tyrosine alone but the enzyme from a wild-type strain or a tyrosine auxotroph was weakly inhibited by l-tyrosine alone (40~50% inhibition, l-tyrosine at 1 mm). The enzyme activity was stimulated by l-tryptophan and the inhibition by l-phenylalanine alone or in the simultaneous presence of l-tyrosine was reversed by l-tryptophan. The Km value of the reaction for chorismate was 2.9 } 10?3 m. Formation of chorismate mutase was repressed by l-phenylalanine. A phenylalanine auxotrophic l-tyrosine producer, C. glutamicum 98–Tx–71, which is resistant to 3-amino-tyrosine, p-aminophenylanaine, p-fluorophenylalanine and tyrosine hydroxamate had chorismate mutase derepressed to two-fold level of the parent KY 10233. The enzyme in C. glutamicum seems to have two physiological roles; one is the control of the metabolic flow to l-phenylalanine and l-tyrosine biosynthesis and the other is the balanced partition of chorismate between l-phenylalanine-l-tyrosine biosynthesis and l-tryptophan biosynthesis.  相似文献   

2.
Properties of 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthetase from Corynebacterium glutamicum were examined using the cell free extract. The optimum pH for the reaction was broad ranging from 5.5 to 7.0 and the optimum temperature was 37°C. Co2+ inhibited the enzyme activity at 20°C, whereas Co2+ apparently stimulated the enzyme activity at 37°C because the ion protected the enzyme from inactivation at 37°C. Co2+ reversed the inhibition of the enzyme activity by EDTA. The activity of DAHP synthetase was feedback inhibited only weakly by l-phenylalanine, l-tyrosine or l-tryptophan alone, but was strongly inhibited synergistically by l-phenylalanine and l-tyrosine. l-Tryptophan enhanced the inhibition by the pair of l-tyrosine and l-phenylalanine. Maximal inhibition was near 90 % in the simultaneous presence of the three amino acids. Sensitivity of the enzyme to the inhibitors was lost during the purification process of the enzyme or during the reaction at 37°C. Especially sensitivity to l-tryptophan was easily lost. Co2+ protected the enzyme from the desensitization. Mutants resistant to p-fluorophenylalanine plus l-tyrosine (or 3-aminotyrosine) had DAHP synthetase which was released from the feedback inhibition by the three amino acids. The formation of the enzyme was not affected by aromatic amino acids.  相似文献   

3.
Regulatory properties of the enzymes in l-tyrosine and l-phenyalanine terminal pathway in Corynebacterium glutamicum were investigated. Prephenate dehydrogenase was partially feedback inhibited by l-tyrosine. Prephenate dehydratase was strongly inhibited by l-phenylalanine and l-tryptophan and 100% inhibition was attained at the concentrations of 5 × 10?2mm and 10?1mm, respectively. l-Tyrosine stimulated prephenate dehydratase activity (6-fold stimulation at 1 mm) and restored the enzyme activity inhibited by l-phenylalanine or l-tryptophan. These regulations seem to give the balanced synthesis of l-tyrosine and l-phenyl-alanine. Prephenate dehydratase from C. glutamicum was stimulated by l-methionine and l-leucine similarly to the enzyme in Bacillus subtilis and moreover by l-isoleucine and l-histidine. C. glutamicum mutant No. 66, an l-phenylalanine producer resistant to p-fluorophenyl-alanine, had a prephenate dehydratase completely resistant to the inhibition by l-phenylalanine and l-tryptophan.  相似文献   

4.
1. Some of 5-methyltrypotophan (5MT)-resistant mutants derived from glutamate-producing bacteria such as Brevibacterium flavum, Corynebacterium acetoglutamicum and Micrococcus glutamicus produced a small amount of l-tryptophan, while tyrosine and phenylalanine auxotrophs of B. flavum did not.

2. 5-MT-resistant mutant derived from the auxotroph for tyrosine and phenylalanine produced 390 mg/liter of l-tryptophan at most. A mutant resistant to a higher concentration of 5MT, which was derived from a tyrosine and phenylalanine auxotrophic mutant which was resistant to a low concentration of 5MT, produced 660 mg/liter of l-tryptophan. Using this mutant, the effects of the concentrations of components of the culture medium on the l-tryptophan production were examined. The high concentration of l-tyrosine, but not l-phenylalanine, inhibited the l-tryptophan production. Using the improved culture medium, this strain produced 1.9 g/liter of l-tryptophan.  相似文献   

5.
The formation of aromatic l-amino acid decarboxylase in bacteria was studied with intact cells in a reaction mixture containing the aromatic l-amino acids, 3,4-dihydroxy-l-phenyl-alanine, l-tyrosine, l-phenylalanine, l-tryptophan and 5-hydroxy-l-tryptophan. Activity was widely distributed in such genera as Achromobacter, Micrococcus, Staphylococcus and Sarcina. Bacterial strains belonging to the Micrococcaceae showed especially high decarboxylase activity toward l-tryptophan, 5-hydroxy-l-tryptophan and l-phenylalanine. M. percitreus AJ 1065 was selected as a promising source of aromatic l-amino acid decarboxylase. Results of experiments with this bacterium showed that the aromatic amine formed from l-tryptophan by the enzymatic method was identical with tryptamine. M. percitreus constitutively produced an enzyme which exhibited decarboxylase activity toward l-tryptophan. However, when large amounts of the aromatic l-amino acids listed above or the tryptamine formed from l-tryptophan were added, enzyme formation was repressed.

Cells with high enzyme activity were prepared by cultivating this bacterium at 30°C for 24 hr in a medium containing 0.5% glycerol, 0.5% yeast extract, 0.5% Polypepton, 3.0 vol % soybean protein hydrolyzate, 0.1% KH2PO4, 0.1% MgSO4 · 7H2O, 0.001% FeSO4 · 7H2O and 0.001% MnSO4 · 5H2O in tap water (pH 8.0).  相似文献   

6.
p-Fluorophenylalanine (PFP) and m-fluorophenylalanine were the most effective inhibitors on the growth of Corynebacterium glutamicum ATCC 13032 among the analogs of phenylalanine and tyrosine tested. Their inhibitory effects were released by L-phenylalanine, and slightly by L-tyrosine and L-tryptophan. 3-Aminotyrosine (3AT), p-aminophenylalanine, o-fluorophenylalanine, and β-2-thienylalanine were weak inhibitors.

Resistant mutants of C. glutamicum isolated on the medium containing both PFP and 3AT or PFP and L-tyrosine were found to accumulate both L-tyrosine and L-phenylalanine, while resistant mutants isolated on the medium containing only PFP were found to produce only L-phenylalanine. Resistant mutants from other glutamic acid producing bacteria isolated on the medium containing both PFP and 3AT or both PFP and L-tyrosine were found to accumulate L-tyrosine and L-phenylalanine.  相似文献   

7.
Polyauxotrophic mutants of Corynebacterium glutamicum which have additional requirements to L-phenylalanine were derived from L-tyrosine producing strains of phenylalanine auxotrophs, C. glutamicum KY 9189 and C. glutamicum KY 10233, and screened for L-tyrosine production. The increase of L-tyrosine production was noted in many auxotrophic mutants derived from both strains. Especially some double auxotrophs which require phenylalanine and purine, phenylalanine and histidine, or phenylalanine and cysteine produced significantly higher amounts of L-tyrosine compared to the parents, A phenylalanine and purine double auxotrophic strain LM–96 produced L-tyrosine at a concentration of 15.1 mg per ml in the medium containing 20% sucrose. L-Tyrosine production by the strain decreased at high concentrations of L-phenylalanine.  相似文献   

8.
The reaction conditions for the production of l-tryptophan from dl-5-indolyl- methylhydantoin by Flavobacterium sp. AJ-3940, and the cultural conditions for the formation of the enzyme involved by this bacterium were investigated. The optimal pH of this reaction was around 8.5 and the optimal temperature was between 45 to 55°C. The amount of l-tryptophan produced was remarkably increased by the addition of inosine, which formed a water insoluble adduct with l-tryptophan, to the reaction mixture because of the release of end-product inhibition by l-tryptophan. This enzyme was inducibly and intracellularly produced by Flavobacterium sp. AJ-3940 in proportion to the increase in cell growth. Cells showing high activity were obtained using a medium containing 5 g glucose, 5 g (NH4)2SO4, 1 g KH2PO4, 3 g K2HPO4, 0.1 g MgSO4 · 7H2O, 0.01 g CaCl2 · 2H2O, 50 ml corn steep liquor and 3.5 g dl-5-indolylmethylhydantoin in a total volume of 1 liter (pH 7.0). Under the best conditions, 43 mg/ml of l-tryptophan was produced from 50 mg/ml of dl-5-indolylmethylhydantoin with a molar yield of 97% in the presence of cells of Flavobacterium sp. AJ-3940. In addition, other l-aromatic amino acids such as l-phenylalanine, l-tyrosine, l-DOPA and related l-amino acids were also produced from the corresponding 5-substituted hydantoins by this bacterium containing the l-tryptophan-producing enzyme induced by dl-5-indolylmethylhydantoin.  相似文献   

9.
A tyrosine auxotroph derived from a hydrocarbon utilizing bacterium, Corynebacterium sp. KY 4309, was found to accumulate a large amount of l-phenylalanine in the broth. The cultural conditions for l-phenylalanine production were studied. The pH value during cultivations exhibited a remakable effect on l-phenylalanine production. The addition of l-tryptophan enhanced the l-phenylalanine accumulation. Shikimic acid and phenylpyruvic acid are possible precursors of phenylalanine biosynthesis in this bacterium. Production of l-phenylalanine attained to a level of 10 mg per ml for 68 hr under optimal conditions.  相似文献   

10.
An inducible tryptophanase was crystallized from the cell extract of Proteus rettgeri grown in a medium containing l-tryptophan. The purification procedure included ammonium sulfate fractionation, heat treatment, DEAE-Sephadex and hydroxylapatite column chromatographies. Crystals were obtained from solutions of the purified enzyme by the addition of ammonium sulfate.

The crystalline enzyme preparation was homogeneous by the criteria of ultracentrifugation and zone electrophoresis. The molecular weight was determined to be approximately 210,000.

The crystalline enzyme catalyzed the degradation of l-tryptophan into indole, pyruvate and ammonia in the presence of added pyridoxal phosphate. The enzyme also catalyzed pyruvate formation from 5-hydroxy-l-tryptophan, 5-methyl-l-tryptophan, S-methyl-l-cysteine and l- cysteine. l-, d-Alanine, l-phenylalanine and indole inhibited pyruvate formation from these substrates.  相似文献   

11.
The growth of Bacillus subtilis TR–44, a prototrophic transductant from one of inosine producers, was completely inhibited by 200 µg/ml of 5-fiuorotryptophan, a tryptophan analogue, and the inhibition was reversed by the addition of L-tryptophan.

Several mutants resistant to 5FT* produced L-tryptophan in the growing cultures. The best producer, strain FT–39, which was selected on a medium containing 1500 µg/ml of 5FT, produced 2 g/liter of L-tryptophan, when cultured in a medium containing 8% of glucose but without any tryptophan precursors. In this mutant, anthranilate synthetase, a key enzyme of the tryptophan biosynthesis, had increased over 280-fold, presumably owing to a genetic derepression. From FT–39, mutants resistant to 7000 µg/ml of 5FT were derived. Among them, strain FF–25 produced 4 g/liter of L-tryptophan, twice as much as did the parental strain. Since this strain produced large amount of L-phenylalanine as well as L-tryptophan, the genetic alteration seemed to be involved in some metabolic regulation of common part of the aromatic amino acid biosynthetic pathway.

Further, some auxotrophs derived from these 5FT resistant mutants produced more L-tryptophan than did the parental strains.

Relationships between the accumulation of L-tryptophan and the regulation mechanisms of the L-tryptophan biosynthesis were discussed.  相似文献   

12.
Tyrosine phenol lyase catalyzes a series of α,β-elimination, β-replacement and racemization reactions. These reactions were studied with intact cells of Erwinia herbicola ATCC 21434 containing tyrosine phenol lyase.

Various aromatic amino acids were synthesized from l-serine and phenol, pyrocatechol, resorcinol or pyrogallol by the replacement reaction using the intact cells. l(d)-Tyrosine, 3,4-dihydroxyphenyl-l(d)-alanine (l(d)-dopa), l(d)-serine, l-cysteine, l-cystine and S-methyl-l-cysteine were degraded to pyruvate and ammonia by the elimination reaction. These amino acids could be used as substrate, together with phenol or pyrocatechol, to synthesize l-tyrosine or l-dopa via the replacement reaction by intact cells. l-Serine and d-serine were the best amino acid substrates for the synthesis of l-tyrosine or l-dopa. l-Tyrosine and l-dopa synthesized from d-serine and phenol or pyrocatechol were confirmed to be entirely l-form after isolation and identification of these products. The isomerization of d-tyrosine to l-tyrosine was also catalyzed by intact cells.

Thus, l-tyrosine or l-dopa could be synthesized from dl-serine and phenol or pyrocatechol by intact cells of Erwinia herbicola containing tyrosine phenol lyase.  相似文献   

13.
The regulatory mechanisms in branched-chain amino acid synthesis were compared between 2-thiazolealanine (2-TA) resistant l-leucine and l-valine producing mutants and the 2-TA sensitive original strains of Brevibacterium lactofermentum 2256.

In the original strains, sensitive to 2-TA, α-isopropylmalate (IPM) synthetase, the initial enzyme specific for l-leucine synthesis, is sensitive to feedback inhibition and to repression by l-leucine, and α-acetohydroxy acid (AHA) synthetase, the common initial enzyme for synthesis of l-isoleucine, l-valine as well as l-leucine, is sensitive to feedback inhibition by each one of these amino acids, and to repression by them all. In strain No. 218, a typical l-leucine producer resistant to 2-TA, IPM synthetase was found to be markedly desensitized and derepressed, and AHA synthetase remained unaltered. On the contrary, in strain No. 333, l-valine producer resistant to 2-TA, AHA synthetase was found to be desensitized and partially derepressed, and IPM synthetase remained unaltered.

The genetic alteration of these regulatory mechanisms was discussed in connection with the accumulation pattern of amino acids.  相似文献   

14.
The regulatory mechanism for l-tryptophan (l-Trp) synthesis was compared between the wild type strain and l-Trp producing mutants of B. subtilis K. In the wild type strain, indolmycin (IM) repressed the synthesis of anthranilate synthetase (AS) more strongly than 5-fluorotryptophan ? (5FT), which repressed AS to the same extent as l-Trp did. 5FT inhibited the activity of AS as strongly as l-Trp did, while IM had no inhibitory effect. In the 5FT resistant strains, the syntheses of AS and tryptophan synthetase (TS-B) were markedly increased by genetic derepression, while AS remained still sensitive to the feedback inhibition by l-Trp. The facts that IM repressed the syntheses of AS and TS-B in the strain which was 5FTr and IMS, and did not repress those in the IM-resistant mutant suggested that IM acts as a co-repressor in a different way from 5FT.  相似文献   

15.
The properties of the tyrosinase from Pseudomonas melanogenum was investigated with the crude enzyme preparation. Optimum temperature and pH of the enzyme were 23°C and 6.8, respectively. l-Tyrosine, d-tyrosine, m-tyrosine, N-acetyl-l-tyrosine and l-DOPA were utilized as a substrate by the enzyme. The value for Km obtained were as follows: l-tyrosine 6.90 × 10?4 m, d-tyrosine 1.43 ×10?3 m and l-DOPA 9.90 × 10?4 m. The enzyme was inhibited by chelating agents of Cu2+ l-cysteine, l-homocysteine, thiourea and diethyl-dithiocarbamate and the inhibition was completely reversed by the addition of excess Cu2+ From these results it is concluded that the enzyme is a copper-containing oxidase.  相似文献   

16.
Phenylalanine ammonia-lyase, which catalyzes the conversion of l-phenylalanine to trans-cinnamic acid and ammonia, has been partially purified from the cells of Rhodotorula. Some of the properties of this phenylalanine ammoyia-lyase were investigated. The enzyme was stable in phosphate buffer of pH over the range of 6.0 to 7.0 On heating, the enzyme was stable up to 50°C, but above 60°C, it was destroyed. The enzyme activity was strongly inhibited by p-chloromercuribenzoate at 10?5 m and almost recovered by the addition of glutathione or mercaptoethanol at 10?3 m. The present enzyme preparation of Rhodotorula also catalyzed the deamination of l-tyrosine to trans-p-coumaric acid. trans-p-Coumaric acid was isolated from the reaction mixture and identified by its absorption spectra. The rates of deamination showed optima at pH 9.0 and 9.5 for l-phenylalanine and l-tyrosine, respectively.  相似文献   

17.
Mutants resistant to various phenylalanine- or tyrosine-analogs were isolated from a phenylalanine auxotroph of Corynebacterium glutamicum KY 10233 by treatment with N- methyl-N′-nitro-N-nitrose guanidine (NTG) and screened for L-tyrosine production. A mutant, 98–Tx–71, which is resistant to 3-aminotyrosine, p-aminophenylalanine, p-fluoro-phenylalanine, and tyrosine hydroxamate was found to produce L-tyrosine at a concentration of 13.5 mg/ml in the cane molasses medium containing 10% of sugar calculated as glucose. A tyrosine-sensitive mutant, pr–20 which was derived from 98–Tx–71 produced L-tyrosine at a concentration of 17.6 mg/ml. L-Tyrosine formation in the strain pr–20 was found to be still inhibited by L-phenylalanine though it was not inhibited by L-tyrosine. The L-tyrosine formation in the mutant was repressed neither by L-phenylalanine nor by L-tyrosine.  相似文献   

18.
Crystalline tyrosine phenol lyase was prepared from the cell extract of Erwinia herbicola grown in a medium supplemented with l-tyrosine. The crystalline enzyme was homogeneous by the criteria of ultracentrifugation and acrylamide gel electrophoresis. The molecular weight was determined to be approximately 259,000. The crystalline enzyme catalyzed the conversion of l-tyrosine into phenol, pyruvate and ammonia, in the presence of added pyridoxal phosphate. The enzyme also catalyzed pyruvate formation from d-tyrosine, S-methyl-l-cysteine, 3, 4-dihydroxyphenyl-l-alanine, l- and d-serine, and l- and d-cysteine, but at lower rates than from l-tyrosine. l-Phenyl-alanine, l-alanine, phenol and pyrocatechol inhibited pyruvate formation from l-tyrosine.

Crystalline tyrosine phenol lyase from Erwinia herbicola is inactive in the absence of added pyridoxal phosphate. Binding of pyridoxal phosphate to the apoenzyme is accompanied by pronounced increase in absorbance at 340 and 425 mμ. The amount of pyridoxal phosphate bound to the apoenzyme was determined by equilibrium dialysis to be 2 moles per mole of enzyme. Addition of the substrate, l-tyrosine, or the competitive inhibitors, l-alanine and l-phenyl-alanine, to the holoenzyme causes appearance of a new absorption peak near 500 mμ which disappears as the substrate is decomposed but remains unchanged in the presence of the inhibitor.  相似文献   

19.
The effects on the polymorphic crystallization of l-glutamic acid were examined of many substances including amino acids, inorganic salts, surface active agents, and sodium salt or hydrochloride of l-glutamic acid, when contained in the mother liquor.

The co-existence of amino acids, especially of l-aspartic acid, l-phenylalanine, l-tyrosine, l-lcucine and l-cystine contributed to the crystallization of l-glutamic acid in α-form, and these amino acid showed an inhibitory action on the transition of α-crystals as the solid phase in the aqueous solution, to β-crystals.

In the presence of a large amount of l-glutamate or the hydrochloride at the time of nucleation of l-glutamic acid, mostly β-crystals appeared even in the presence of the amino acids named above.  相似文献   

20.
The tryptophanase activity which synthesizes l-tryptophan from pyruvate, ammonia and indole, was found to be widely distributed in cells of bacteria belonging to Enterobacteriaceae, such genera as Escherichia, Kluyvera, Enterobacter, Erwinia and Proteus. With the cells of Proteus rettgeri, equilibrium of the elimination reaction of l-tryptophan in the presence of high concentration of ammonia was studied. It was found that the equilibrium inclines toward the synthetic state.

When 5-hydroxy- and 5-methyl-indole were substituted for indole, 5-hydroxy- and 5-methyl-l-tryptophan, respectively, were synthesized. The synthesis of l-tryptophan was also observed with indole and various amino acids, S-methyl-l-cysteine, S-ethyl-l-cysteine, l-cysteine, 5-fluoro-dl-tryptophan, or oxalacetic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号