首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The F420-dependent NADP reductase of Methanobacterium thermoautotrophicum has been purified employing a combination of DEAE-cellulose ion-exchange chromatography, affinity chromatography with Blue Sepharose, Sephadex G-200 column chromatography and Red Sepharose affinity chromatography. The enzyme, which requires reduced F420 as an electron donor, has been purified over 3000-fold with a recovery of 65%. A molecular weight of 112000 was determined by Sephadex G-200 chromatography. A subunit molecular weight of 28 500 was determined by Sephadex G-200 chromatography. A subunit native enzyme is a tetramer. The optimal temperature for enzymatic activity was found to be 60°C with a pH optimum of 8.0. The NADP reductase had an apparent Km of 128 μMJ for reduced F420 and 40 μM for NADP. The enzyme was stable for at least 4 h at 65°C and pH 7.5. No loss of enzyme activity was detected when purified enzyme was stored aerobically in buffer containing 2-mercaptoethanol for 10 days at 4°C. Neither FMNH2 nor FADH2 could serve as electron donors; NAD was not utilized as electron acceptor.  相似文献   

2.
Flavin reductase is essential for the oxygenases involved in microbial dibenzothiophene (DBT) desulfurization. An enzyme of the thermophilic strain, Bacillus sp. DSM411, was selected to couple with DBT monooxygenase (DszC) from Rhodococcus erythropolis D-1. The flavin reductase was purified to homogeneity from Bacillus sp. DSM411, and the native enzyme was a monomer of Mr 16 kDa. Although the best substrates were flavin mononucleotide and NADH, the enzyme also used other flavin compounds and acted slightly on nitroaromatic compounds and NADPH. The purified enzyme coupled with DszC and had a ferric reductase activity. Among the flavin reductases so far characterized, the present enzyme is the most thermophilic and thermostable. The gene coded for a protein of 155 amino acids with a calculated mass of 17,325 Da. The enzyme was overproduced in Escherichia coli, and the specific activity in the crude extracts was about 440-fold higher than that of the wild-type strain, Bacillus sp. DSM411.  相似文献   

3.
Summary Factors affecting the activity of nitrate reductase (E.C.1.7.7.2) from the halotolerant cyanobacterium Aphanothece halophytica were investigated. Cells grown in nitrate-containing medium exhibited higher nitrate reductase activity than cells grown in medium in which nitrate was replaced by glutamine. When ammonium was present in the medium instead of nitrate, the activity of nitrate reductase was virtually non-detectable, albeit with normal cell growth. The enzyme was localized mainly in the cytoplasm. The enzyme was purified 406-fold with a specific activity of 40.6 μmol/min/mg protein. SDS-PAGE revealed a subunit molecular mass of 58 kDa. Gel filtration experiments revealed a native molecular mass of 61 kDa. The K m value for nitrate was 0.46 mM. Both methyl viologen and ferredoxin could serve as electron donor with K m values of 4.3 mM and 5.2 μM, respectively. The enzyme was strongly inhibited by sulfhydryl-reactive agents and cyanide. Nitrite, the product of the enzyme reaction, showed little inhibition. Chlorate, the substrate analog, could moderately inhibit the enzyme activity. NaCl up to 200 mM stimulated the activity of the enzyme whereas enzyme inhibition was observed at ≥300 mM NaCl.  相似文献   

4.
3-Methylaspartase was purified 24-fold and crystallized from the crude extract of the cells of a facultative anaerobic bacterium from soil, strain YG-1002. The molecular mass of the native enzyme was about 84 kDa and that of the subunit was about 42 kDa. The pH optimum for the deamination reaction of (2S, 3S)-3-methylaspartic acid and those for the amination reaction of mesaconic acid were 9.7 and 8.5; its optimum temperature was 50°C. The enzyme was stable at pH 5.5–11.0 and up to 50°C. The enzyme required both divalent and monovalent cations such as Mg2+ and K+. The enzyme was inhibited by sulfhydryl reagents, metal-chelating reagents and some divalent cations. The enzyme catalyzed the reversible amination/deamination reactions between several 3-substituted (S)-aspartic acids and their corresponding fumaric acid derivatives. The enzyme preferentially acted on (2S, 3S)-3-methylaspartic acid and mesaconic acid in the deamination and the amination reactions respectively. The enzyme showed high similarities in several enzymological properties and N-terminal amino acid sequence with 3-methylaspartase from an obligate anaerobic bacteriumClostridium tetanomorphum.  相似文献   

5.
An inducible sulfite reductase was purified from Clostridium pasteurianum. The pH optimum of the enzyme is 7.5 in phosphate buffer. The molecular weight of the reductase was determined to be 83,600 from sodium dodecyl sulfate gel electrophoresis with a proposed molecular structure: 22. Its absorption spectrum showed a maximum at 275 nm, a broad shoulder at 370 nm and a very small absorption maximum at 585 nm. No siroheme chromophore was isolated from this reductase. The enzyme could reduced the following substrates in preferential order: NH2OH> SeO 3 2- >NO 2 2- at rates 50% or less of its preferred substrate SO 3 2- . The proposed dissimilatory intermediates, S3O 6 2- or S2O 3 2- , were not utilized by this reductase while KCN inhibited its activity. Varying the substrate concentration [SO 3 2- ] from 1 to 2.5 mol affected the stoichiometry of the enzyme reaction by alteration of the ratio of H2 uptake to S2- formed from 2.5:1 to 3.1:1. The inducible sulfite reductase was found to be linked to ferredoxin which could be completely replaced by methyl viologen or partially by benzyl viologen. Some of the above-mentioned enzyme properties and physiological considerations indicated that it was a dissimilatory type sulfite reductase.Abbreviations SDS sodium dodecyl sulfate - BSA bovine serum albumin - LDH Lactate dehydrogenase  相似文献   

6.
Three methods for enzyme modification/immobilization were compared to enhance the catalytic performance of a commercially available lipase, Lipase PS from Pseudomonascepacia, in highly enantioselective transesterification of an agrochemically useful sec-alcohol, (R,?S)-HMPC [=(R,?S)-4-hydroxy-3-methyl-2-(2′-propenyl)-2-cyclopenten-1-one], with vinyl acetate as both acyl donor and reaction medium. The stearic acid-coated lipase showed the highest catalytic activity, with a specific activity improved by 54 times over the native lipase. The microcrystal salt-supported lipase and celite-adsorbed lipase also displayed much better performance as compared with the native lipase. All the three modified lipase preparations showed a similar thermal stability to that of the native enzyme. The enantioselectivity (E-value) was also quite satisfactory in all the cases (E>100 at 30°C), though a trend of slight decline was also observed with the temperature increase in the range of 25–60°C. The optimum aqueous pH, from which the modified lipases were prepared, was 6.0–7.0. A low water activity (aw) of ca. 0.1 was favorable for all the three modified lipases. The stearic acid-coated lipase displayed prominent advantages in catalyzing the transesterification reaction at a very high (R,?S)-HMPC concentration up to 1.0?M.  相似文献   

7.
5,10-Methylenetetrahydrofolate reductase (EC 1.1.1.68) was purified from the cytosolic fraction of sheep liver by (NH4)2 SO4 fractionation, acid precipitation, DEAE-Sephacel chromatography and Blue Sepharose affinity chromatography. The homogeneity of the enzyme was established by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, ultracentrifugation and Ouchterlony immunodiffusion test. The enzyme was a dimer of molecular weight 1,66,000 ± 5,000 with a subunit molecular weight of 87,000 ±5,000. The enzyme showed hyperbolic saturation pattern with 5-methyltetrahydrofolate.K 0.5 values for 5-methyltetrahydrofolate menadione and NADPH were determined to be 132 ΜM, 2.45 ΜM and 16 ΜM. The parallel set of lines in the Lineweaver-Burk plot, when either NADPH or menadione was varied at different fixed concentrations of the other substrate; non-competitive inhibition, when NADPH was varied at different fixed concentrations of NADP; competitive inhibition, when menadione was varied at different fixed concentrations of NADP and the absence of inhibition by NADP at saturating concentration of menadione, clearly established that the kinetic mechanism of the reaction catalyzed by this enzyme was ping-pong.  相似文献   

8.
Hydrogenase was solubilized from the cytoplasmic membrane fraction of betaine-grown Sporomusa sphaeroides, and the enzyme was purified under oxic conditions. The oxygen-sensitive enzyme was partially reactivated under reducing conditions, resulting in a maximal activity of 19.8 μmol H2 oxidized min–1 (mg protein)–1 with benzyl viologen as electron acceptor and an apparent K m value for H2 of 341 μM. The molecular mass of the native protein estimated by native PAGE and gel filtration was 122 and 130 kDa, respectively. SDS-PAGE revealed two polypeptides with molecular masses of 65 and 37 kDa, present in a 1:1 ratio. The native protein contained 15.6 ± 1.7 mol Fe, 11.4 ± 1.4 mol S2–, and 0.6 mol Ni per mol enzyme. The hydrogenase coupled with viologen dyes, but not with other various artificial electron carriers, FAD, FMN, or NAD(P)+. The amino acid sequence of the N-termini of the subunits showed a high degree of similarity to eubacterial membrane-bound uptake hydrogenases. Washed membranes catalyzed a H2-dependent cytochrome b reduction at a rate of 0.18 nmol min–1 (mg protein)–1. Received: 7 September 1995 / Accepted: 4 December 1995  相似文献   

9.
Ribonucleotide reductases (RNR; EC 1.17.4.1) provide the 2′-deoxyribonucleotides for DNA replication of proliferating cells by a uniform radical mechanism using diverse metals. The native metallo-cofactor of the Corynebacterium glutamicum RNR contains manganese and is sensitive to EDTA and radical scavengers. Hybrid holoenzymes, capable of ribonucleotide reduction, were composed of the small manganese-containing (R2F) and the large catalytic subunit (R1E) from either of the two corynebacterial RNRs. A synthetic peptide deduced from the C-terminal region of the nrdF gene inhibited the C. glutamicum-RNR non-competitively and cross-reacted with the C. ammoniagenes-RNR. The C. glutamicum-R2F has a saturable organic radical signal at g=2.005 detected by electron paramagnetic resonance (EPR) spectroscopy and shows a distinct absorption at 408 nm indicative of a tyrosyl-like organic radical (Y·). Quantification of the metal content revealed 0.06 mol Fe but 0.8 mol Mn per mol R2F-monomer and would thus assign two manganese atoms bound to the dimeric metallo-cofactor, while a distinct enzymatic activity (32 µmol×mg?1×min?1) was observed in the biochemical complementation assay. Divergence of the C. glutamicum-RNR studied here from the prototypical Salmonella typhimurium class 1b enzyme and the Chlamydia trachomatis class Ic enzyme is discussed below.  相似文献   

10.
We have propsed earlier a three gene loci model to explain the expression of the aldo-keto reductases in human tissues. According to this model, aldose reductase is a monomer of α subunits, aldehyde reductase I is a dimer of α, β subunits, and aldehyde reductase II is a monomer of δ subunits. Using immunoaffinity methods, we have isolated the subunits of aldehyde reductase I (α and β) and characterized them by immunocompetition studies. It is observed that the two subunits of aldehyde reductase I are weakly held together in the holoenzyme and can be dissociated under high ionic conditions. Aldose reductase (α subunits) was generated from human placenta and liver aldehyde reductase I by ammonium sulfate (80% saturation). The kinetic, structural and immunological properties of the generated aldose reductase are similar to the aldose reductase obtained from the human erythrocytes and bovine lens. The main characteristic of the generated enzyme is the requirement of Li2SO4(0.4 M) for the expression of maximum enzyme activity, and its Km for glucose is less than 50 mM, whereas the parent enzyme, aldehyde reductase I, is completely inhibited by 0.4 M Li2SO4 and its Km for glucose is more than 200 mM. The β subunits of aldehyde reductase I did not have enzyme activity but cross-reacted with anti-aldehyde reductase I antiserum. The β subunits hybridized with the α subunits of placenta aldehyde I, and aldose reductase purified from human brain and bovine lens. The hybridized enzyme had the characteristics properties of placenta aldehyde reductase I.  相似文献   

11.
Glycolate oxidase was purified to apparent homogeneity from the brown alga Spatoglossum pacificum Yendo. The 1326-fold purified glycolate oxidase enzyme exhibited a specific activity of 22. 4 micromoles glyoxylate formed ·min?1·mg protein?1. The molecular weight of the native enzyme was estimated to be 230,000 by gel filtration. The subunit molecular weight of the enzyme was determined to be 49,000 by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, suggesting that the native enzyme is a tetramer. There were two absorption peaks at 345 and 445 nm, indicating that glycolate oxidase is a flavoprotein. This enzyme had a high isoelectric point (pI 9.6) and a high pH optimum (pH 8.3). The Km values for glycolate and l -lactate were 0.49 and 5.5 mM, respectively. This enzyme also had a broad specificity for other straight-chain α-hydroxy acids but not for β-hydroxyacids. Cyanide, azide, N-ethylmaleimide, and p-chloromercuribenzoic acid did not affect the enzyme, whereas 2-pyridylhydroxymethanesulfonic acid strongly inhibited it. These properties of glycolate oxidase from the brown alga S. pacificum are similar to the properties of the glycolate oxidasesfrom higher plants. Polyclonal antibodies raised against the polypeptide fragment of Spatoglossum glycolate oxidase could recognize glycolate oxidase from Spinacia oleracea L., although the cross-reactivity was weak. The N-terminal sequence of two internal polypeptide fragments of the enzyme from S. pacificum showed a high degree of similarity to that of glycolate oxidase from higher plants. These results suggest that glycolate oxidase from higher plants and brown algae share the same ancestral protein.  相似文献   

12.
Cytochrome c oxidases were isolated from heart tissue of beef (Bos tauros), sheep (Ovis aries), horse (Equus caballus), pig (Sus scrofa) (native dimers) and hammerhead shark (Sphyrna lewinii) (native monomer). Limited proteolysis of dimeric enzymes selectively depleted subunit III, resulting in monomerisation and a blue shift (2nm) of the reduced α band to the same wavelength maximum (603nm) as that of the hammerhead shark enzyme. Monomeric enzymes retain the ability to accept electrons rapidly from cytochrome c, and the second-order rate constants for electron transfer between cytochromes c and a are reported. The steady-state kinetics of both native and subunit III-depleted cytochrome c oxidases were biphasic, thus ruling out any explanation for this behaviour that depends on cooperation between functional units (monomers) within a dimer. Functional integrity of the subunit III-depleted enzyme prepared by proteolysis was maintained during multiple turnover, in contrast to reports elsewhere of loss of activity caused by subunit III removal by other means. A model is proposed to explain this difference, in which removal of a hydrophobic membrane-spanning segment of subunit III leads to monomerisation but a residual extra-membrane segment is retained, preserving the functional integrity of the enzyme.  相似文献   

13.
Cells of the phototrophic bacterium Chromatium vinosum strain D were shown to contain a siroheme sulfite reductase after autotrophic growth in a sulfide/bicarbonate medium. The enzyme could not be detected in cells grown heterotrophically in a malate/sulfate medium. Siroheme sulfite reductase was isolated from autotrophic cells and obtained in an about 80% pure preparation which was used to investigate some molecular and catalytic properties of the enzyme. It was shown to consist of two different types of subunits with molecular weights of 37,000 and 42,000, most probably arranged in an 44-structure. The molecular weight of the native enzyme was determined to 280,000, 51 atoms of iron and 47 atoms of acid-labile sulfur were found per enzyme molecule. The absorption spectrum indicated siroheme as prosthetic group; it had maxima at 280 nm, 392 nm, 595 nm, and 724 nm. The molar extinction coefficients were determined as 302×103 cm2xmmol-1 at 392 nm, 98×103 cm2 xmmol-1 at 595 nm and 22×103 cm2x-mmol-1 at 724 nm. With reduced viologen dyes as electron donor the enzyme reduced sulfite to sulfide, thiosulfate, and trithionate. The turnover number with 59 (2 e-/enzyme moleculexmin) was low. The pH-optimum was at 6.0. C. vinosum sulfite reductase closely resembled the corresponding enzyme from Thiobacillus denitrificans and also desulfoviridin, the dismilatory sulfite reductase from Desulfovibrio species. It is proposed that C. vinosum catalyses anaerobic oxidation of sulfide and/or elemental sulfur to sulfite in the course of dissimilatory oxidation of reduced sulfur compounds to sulfate.Non-common abbreviations APS adenylyl sulfate - SDS sodium dodecyl sulfate  相似文献   

14.
Generally, recombinant and native microorganisms can be employed as whole-cell catalysts. The application of native hosts, however, shortens the process development time by avoiding multiple steps of strain construction. Herein, we studied the NAD(P)H-dependent reduction of o-chloroacetophenone by isolated xylose reductases and their native hosts Candida tenuis and Pichia stipitis. The natural hosts were benchmarked against Escherichia coli strains co-expressing xylose reductase and a dehydrogenase for co-enzyme recycling. Xylose-grown cells of C. tenuis and P. stipitis displayed specific o-chloroacetophenone reductase activities of 366 and 90 U gCDW–1, respectively, in the cell-free extracts. Fresh biomass was employed in batch reductions of 100 mM o-chloroacetophenone using glucose as co-substrate. Reaction stops at a product concentration of about 15 mM, which suggests sensitivity of the catalyst towards the formed product. In situ substrate supply and product removal by the addition of 40% hexane increased catalyst stability. Optimisation of the aqueous phase led to a (S)-1-(2-chlorophenyl)ethanol concentration of 71 mM (ee > 99.9%) obtained with 44 gCDW L–1 of C. tenuis. The final difference in productivities between native C. tenuis and recombinant E. coli was < 1.7-fold. The optically pure product is a required key intermediate in the synthesis of a new class of chemotherapeutic substances (polo-like kinase 1 inhibitors).  相似文献   

15.
A soil inhabiting Pseudomonas sp. has been examined for producing L- methionine gamma-lyase enzyme. The identity of the tested bacteria was verified by VITEK2, and MALDI-TOF analysis in addition to molecular confirmation by 16S rDNA sequence and submitted in Genbank under accession number ON993898.1. Production of the targeted enzyme was done using a commercial medium including L-methionine, as the main substrate. This obtained enzyme was precipitated using acetone (1:1v/v) followed by purification with Sephadex G100 and sepharose columns. The specific activity of the purified enzyme (105.8 µmol/ mg/min) increased by 1.89 folds after the purification steps. The peptide fingerprint of the native MGL was verified from the proteomics analysis, with identical conserved active site domains with database-deposited MGLs. The molecular mass of the pure MGL denatured subunit was (>40 kDa) and that of the native enzyme was (>150 kDa) ensuring their homotetrameric identity. The purified enzyme showed absorption spectra at 280 nm and 420 nm for the apo-MGL and PLP coenzyme, respectively. Amino acids suicide analogues analysis by DTNB, hydroxylamine, iodoacetate, MBTH, mercaptoethanol and guanidine thiocyanate reduced the relative activity of purified MGL. From the kinetic properties, the catalytic effectiveness (Kcat/km) of Pseudomonas sp. MGL was 10.8 mM -1 S-1 for methionine and 5.51 mM -1 S-1 for cysteine, respectively. The purified MGL showed highly significant antiproliferative activity towards the liver carcinoma cell line (HEPG-2) and breast carcinoma cell line (MCF-7) with half inhibitory concentration values (IC50) 7.23 U/ml and 21.14 U/ml, respectively. No obvious signs of toxicity on liver and kidney functions in the examined animal models were observed.  相似文献   

16.
Washed membranes prepared from H2+CO2- or formate-grown cells of Methanococcus voltae catalyzed the oxidation of coenzyme F420H2 and the reduction of the heterodisulfide (CoB–S–S–CoM) of 2-mercaptoethanesulfonate and 7-mercaptoheptanoylthreonine phosphate, which is the terminal electron acceptor of the methanogenic pathway. The reaction followed a 1:1 stoichiometry according to the equation: F420H2 + COB–S–S–CoM → F420 + CoM–SH + CoB–SH. These findings indicate that the reaction depends on a membrane-bound F420H2-oxidizing enzyme and on the heterodisulfide reductase, which remains partly membrane-bound after cell lysis. To elucidate the nature of the F420H2-oxidizing protein, washed membranes were solubilized with detergent, and the enzyme was purified by sucrose density centrifugation, anion-exchange chromatography, and gel filtration. Several lines of evidence indicate that F420H2 oxidation is catalyzed by a membrane-associated F420-reducing hydrogenase. The purified protein catalyzed the H2-dependent reduction of methyl viologen and F420. The apparent molecular mass and the subunit composition (43, 37, and 27 kDa) are almost identical to those of the F420-reducing hydrogenase that has already been purified from Mc. voltae. Moreover, the N-terminus of the 37-kDa subunit is identical to the amino acid sequence deduced from the fruG gene of the operon encoding the selenium-containing F420-reducing hydrogenase from Mc. voltae. A distinct F420H2 dehydrogenase, which is present in methylotrophic methanogens, was not found in this organism. Received: 18 September 1998 / Accepted: 2 November 1998  相似文献   

17.
An (S)-specific carbonyl reductase (SCRII) was purified to homogeneity from Candida parapsilosis by following an anti-Prelog reducing activity of 2-hydroxyacetophenone. Peptide mass fingerprinting analysis shows SCRII belongs to short-chain dehydrogenase/reductase family. Its coding gene was cloned and overexpressed in Escherichia coli. The recombinant SCRII displays the similar enzymatic characterization and catalytic properties to SCR. It catalyzes the enantioselective reduction of 2-hydroxyacetophenone to (S)-1-phenyl-1,2-ethanediol with excellent optical purity of 100% in higher yield than SCR. Based on the sequence-structure alignment, several single-point mutations inside or adjacent to the substrate-binding loop or active site were designed. With respect to recombinant native SCRII, the A220 and E228 mutations almost lost enantioselectivity towards 2-hydroxyacetophenone reduction. The catalytic efficiencies (kcat/Km) for the A220 or E228 variants are <7% that of the unmutated enzyme. This work provides an excellent catalyst for enantiopure alcohol preparation and the lethal mutations of A220 and E228 suggest their importance in substrate-binding and/or catalysis.  相似文献   

18.
The cyclitol 1d-4-O-methyl-myo-inositol (d-ononitol) is accumulated in certain legumes in response to abiotic stresses. S-Adenosyl-l-methionine:myo-inositol 6-O-methyltransferase (m6OMT), the enzyme which catalyses the synthesis of d-ononitol, was extracted from stems of Vigna umbellata Ohwi et Ohashi and purified to apparent homogeneity by a combination of conventional chromatographic techniques and by affinity chromatography on immobilized S-adenosyl-l-homocysteine (SAH). The purified m6OMT was photoaffinity labelled with S-adenosyl-l-[14C-methyl]methionine. The native molecular weight was determined to be 106 kDa, with a subunit molecular weight of 40 kDa. Substrate-saturation kinetics of m6OMT for myo-inositol and S-adenosyl-l-methionine (SAM) were Michaelis-Menten type with K m values of 2.92 mM and 63 M, respectively. The SAH competitively inhibited the enzyme with respect to SAM (K i of 1.63 M). The enzyme did not require divalent cations for activity, but was strongly inhibited by Mn2+, Zn2+ and Cu2+ and sulfhydryl group inhibitors. The purified m6OMT was found to be highly specific for the 6-hydroxyl group of myo-inositol and showed no activity on other naturally occurring isomeric inositols and inositol O-methyl-ethers. Neither d-ononitol, nor d-3-O-methyl-chiro-inositol, d-1-O-methyl-muco-inositol or d-chiro-inositol (end products of the biosynthetic pathway in which m6OMT catalyses the first step), inhibited the activity of the enzyme.Abbreviations DTT dithiothreitol - m6OMT myo-inositol 6-O-methyltransferase - SAH S-adenosyl-l-homocysteine - SAM S-adenosyl-l-methionine We are greatful to Professor M. Popp (University of Vienna) for helpful discussion and comment. This work was supported by Grant P09595-BIO from the Austrian Science Foundation (FWF).  相似文献   

19.
Phenylalanyl-tRNA synthetase (EC 6.1.1.20) has been purified to homogeneity from a 100-fold overproducing Escherichia coli strain carrying a hybrid pBR322 plasmid containing the pheS-pheT locus. The purified enzyme is identical to the phenylalanyl-tRNA synthetase isolated from an haploid strain. The enzyme was found to dissociate in the presence of 0.5 M NaSCN and the α- and β-subunits composing the native α2β2 enzyme were separated by gel filtration. Neither isolated subunit showed significant catalytic activity. A complex indistinguishable from the native enzyme with full catalytic activity is recovered upon mixing the subunits. The N- and C-terminal sequences and the amino acid composition of each subunit were determined. They are compared to the available data concerning the primary structure of the subunits, as deduced from nucleotide sequencing of the pheS-pheT operon.  相似文献   

20.
The in vitro reconstitution of DNA-dependent RNA polymerase of Escherichia coli is markedly enhanced by the σ subunit. This conclusion is based on the following observations: (1) the core activity was higher for the enzyme reconstituted from mixtures of α, β,β′ and σ subunits than from those devoid of the σ subunit; (2) the reconstituted enzyme lacking the σ subunit could never regain full activity even when the σ subunit was supplied before assay and (3) the recovery of enzyme activity increased in proportion to the amount of σ subunit present during reconstitution.This influence of the σ subunit was also observed when reconstitution was carried out by mixing the α2β complex and the β′ subunit, the second step in the sequence of enzyme formation. The σ subunit-dependent assembly between the α2β complex and the β′ subunit required an ionic strength of around 0.2 m-KC1 and was enhanced by higher temperatures. In contrast, formation of the α2β complex, which exhibited no requirement for the σ subunit, was unaffected by the salt concentration used or the temperature of reaction. The enhancement was observed not only at neutral but also at alkaline pH. The native enzyme per se was greatly activated after brief exposure to alkali.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号