首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was made on the elaborate separation and identification of the fraction, boiling higher than monoterpene hydrocarbons, of cold-pressed peel oil of Citrus natsudaidai Hayata, by using fractional distillation under reduced pressure, adsorption and gas chromatography, infrared, mass and proton magnetic resonance spectrometry. The following components were identified; in sesquiterpene hydrocarbon series: copaene, β-elemene, β-ylangene, caryophyllene, aromadendrene, farnesene, α-selinene, δ-cadinene, calamenene, α-calacorene; and among oxygenated compounds: n-nonyl alcohol, n-decyl alcohol, linalool, α-terpineol, terpinen-4-ol, nerolidol, elemol, n-octyl aldehyde, n-decyl aldehyde, perillaldehyde, carvone, n-octyl acetate, n-decyl acetate, geranyl acetate, perillyl acetate and acetic ester of p-methadiene-1,8(10)-ol-9.  相似文献   

2.
Zhang Y  Tobias HJ  Brenna JT 《Steroids》2009,74(3):369-271
Carbon isotope ratio (CIR) analysis of urinary steroids using gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS) is a recognized test to detect illicit doping with synthetic testosterone. There are currently no universally used steroid isotopic standards (SIS). We adapted a protocol to prepare isotopically uniform steroids for use as a calibrant in GCC-IRMS that can be analyzed under the same conditions as used for steroids extracted from urine. Two separate SIS containing a mixture of steroids were created and coded CU/USADA 33-1 and CU/USADA 34-1, containing acetates and native steroids, respectively. CU/USADA 33-1 contains 5α-androstan-3β-ol acetate (5α-A-AC), 5α-androstan-3α-ol-17-one acetate (androsterone acetate, A-AC), 5β-androstan-3α-ol-11, 17-dione acetate (11-ketoetiocholanolone acetate, 11k-AC) and 5α-cholestane (Cne). CU/USADA 34-1 contains 5β-androstan-3α-ol-17-one (etiocholanolone, E), 5α-androstan-3α-ol-17-one (androsterone, A), and 5β-pregnane-3α, 20α-diol (5βP). Each mixture was prepared and dispensed into a set of about 100 ampoules using a protocol carefully designed to minimize isotopic fractionation and contamination. A natural gas reference material, NIST RM 8559, traceable to the international standard Vienna PeeDee Belemnite (VPDB) was used to calibrate the SIS. Absolute δ13CVPDB and Δδ13CVPDB values from randomly selected ampoules from both SIS indicate uniformity of steroid isotopic composition within measurement reproducibility, SD(δ13C) < 0.2‰. This procedure for creation of isotopic steroid mixtures results in consistent standards with isotope ratios traceable to the relevant international reference material.  相似文献   

3.
14α-Ethyl-5α-cholest-7-en-15α-ol-3-one was prepared in 85% yield by selective oxidation of the 3β-hydroxyl function of 14α-ethyl-5α-cholest-7-en-3β,15α-diol by cholesterol oxidase. 14α-Ethyl-5α-cholest-7-en-15α-ol-3-one caused a 50% inhibition of the incorporation of [1-14C]-acetate into digitonin-precipitable sterols at a concentration of 6 × 10?9M in L cells and a 50% reduction in level of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase activity in the same cells at a concentration of 4 × 10?8 M.  相似文献   

4.
Abstract

Biotransformation of 5α-hydroxycaryophylla-4(12),8(13)-diene (1) was studied with Cunninghamella elegans and Rhizopus stolonifer. Incubation of 1 with C. elegans gave regioselective oxidative addition (hydration) and isomerization at the C-4(12) exocyclic double bond and hydroxylation at C-3 and C-15, and thus provided two polar metabolites, (3Z),8(14)-caryophylladiene-5α,(11R)-15-diol (2) and 3β,4β,5α-trihydroxycaryophylla-8(13)-ene (3). Incubation of 1 with R. stolonifer gave a transannular cyclization reaction and afforded 2β-methoxyclovan-9-one (4), clovan-2β-ol-9-one (5) and 8-methoxycaryolane-5α,13β-diol (6). Compounds 3 and 6 are new compounds described here for the first time; their structures were deduced with the help of different spectroscopic techniques.  相似文献   

5.
Abstract

The biotransformation of four 3β-hydroxy-5-en-steroids with varying substituents at C-16 or/and C-17 by Mucor silvaticus was investigated. The characterization of the metabolites was performed by IR, MS, 1H NMR, 13C NMR, and 2-D NMR. All the examined substrates were transformed, mainly by 7α-hydroxylation. Studies carried out with M. silvaticus demonstrated the versatility of this organism in introducing hydroxyl groups at the 7α-, 9α-, 11α-, and 14α-positions in 3-ol-5-ene steroids. The relationships between the substrate structures and hydroxylated positions are also discussed.  相似文献   

6.
The biotransformation of dehydroepiandrosterone (1) with Macrophomina phaseolina was investigated. A total of eight metabolites were obtained which were characterized as androstane-3,17-dione (2), androst-4-ene-3,17-dione (3), androst-4-ene-17β-ol-3-one (4), androst-4,6-diene-17β-ol-3-one (5), androst-5-ene-3β,17β-diol (6), androst-4-ene-3β-ol-6,17-dione (7), androst-4-ene-3β,7β,17β?triol (8), and androst-5-ene-3β,7α,17β-triol (9). All the transformed products were screened for enzyme inhibition, among which four were found to inhibit the β-glucuronidase enzyme, while none inhibited the α-chymotrypsin enzyme.  相似文献   

7.
It has been shown that the cultured cells of Digitalis purpruea are capable of transforming progesterone (I) to 5α-pregnane-3,20-dione (II), 5α-pregnan-3β-ol-20-one (III), its glucoside (IV), 5α-pregnane-3β,20α-diol (V), its glucoside (VI), 5α-pregnane-3β,20β-diol (VII), its glucoside (VIII), Δ4-pregnen-20α-ol-3-one (IX), its glucoside (X), Δ-pregnen-20β-ol-3-one (XI) and its glucoside (XII). 5α-Pregnan-3β-ol-20-one glucoside (IV), 5α-pregnane-3β,20α-diol glucoside (VI), 5α-pregnane-3β,20β-diol glucoside (VIII), Δ4-pregnen-20α-ol-3-one glucoside (X) and Δ4-pregnen-20β-ol-3-one glucoside (XII) have been found for the first time as new metabolises by plant tissue cultures. A scheme for the biotransformation of progesterone (I) has been proposed, and the reduction and glucosidation activities distinctly have been observed in these cultured cells.  相似文献   

8.
The chemical composition of 50 samples of leaf oil isolated from Algerian Juniperus phoenicea var. turbinata L. harvested in eight locations (littoral zone and highlands) was investigated by GC‐FID (in combination with retention indices), GC/MS, and 13C‐NMR analyses. The composition of the J. phoenicea var. turbinata leaf oils was dominated by monoterpenes. Hierarchical cluster and principal component analyses confirmed the chemical variability of the leaf oil of this species. Indeed, three clusters were distinguished on the basis of the α‐pinene, α‐terpinyl acetate, β‐phellandrene, and germacrene D contents. In most oil samples, α‐pinene (30.2–76.7%) was the major compound, associated with β‐phellandrene (up to 22.5%) and α‐terpinyl acetate (up to 13.4%). However, five out of the 50 samples exhibited an atypical composition characterized by the predominance of germacrene D (16.7–22.7%), α‐pinene (15.8–20.4%), and α‐terpinyl acetate (6.1–22.6%).  相似文献   

9.
The metabolism and excretion of progesterone in different animal species results in several fecal 5-reduced progesterone metabolites (pregnanes), which in recent studies were quantified using progesterone antibodies. To increase the accuracy of fecal 20-oxo-pregnane evaluations in the black rhinoceros, enzyme immunoassays (EIA) using antibodies against 5α-pregnane-3β-ol-20-one 3HS:BSA (5α-20-one EIA) and 5β-pregnane-3α-ol-20-one 3HS:BSA (5β-20-one EIA) were developed. The assays showed high crossreactivities with pregnanes containing a 20-oxo group and are referred to as group-specific; results of these assays were compared with an EIA using an antibody against 6HS-progesterone (4-ene-20-one EIA). Fecal samples of both subspecies of the black rhinoceros (Diceros bicornis michaeli, n = 5, and Diceros bicornis minor, n = 1) during pregnancy were collected 1–3 times/week. HPLC separation showed three major immunoreactive fecal 20-oxo-pregnane peaks; their elution profiles and different crossreactivities in the three EIAs provided strong evidence that these peaks are 5α-pregnane-3, 20-dione, 5α-pregnane-3α-ol-20-one, and 5α-pregnane-3β-ol-20-one. Pregnane values in the pregnant animals continuously increased between months 3–7 and were significantly (P < 0.01) elevated above the levels of nonpregnant animals (0.2 μg/g) by week 11. During months 6–13 concentrations in the 5α-20-one and in the 5β-20-one EIA (5–11 μg/g) were significantly (P < 0.01) higher than in the 4-ene-20-one EIA (1.5–3 μg/g). In conclusion, the immunoreactive fecal 20-oxo-pregnane metabolites in the black rhinoceros are determined more accurately with antibodies against pregnane-20-one-C3 conjugates, as compared with a progesterone antibody. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Hydroboration of 5α-cholesta-8,14-dien-3β-ol (I) gave 5α-cholest-8-en-3β,15α-diol (IV) in 89% yield. 5α-Cholest-7-en-3β,15α-diol (V) was prepared in 91% yield by hydroboration of 5α-cholesta-7,14-dien-3β-ol (II). Hydroboration of 27:63 mixture of I and II gave IV and V in 18% and 70% yields, respectively. 5α-Cholest-8-en-15α-ol-3-one and 5α-cholest-7-en-15α-ol-3-one were prepared in high yields from IV and V, respectively, by either selective oxidation with silver carbonate-celite or by enzymatic oxidation using cholesterol oxidase. 7α,8α-Epoxy-5α-cholestan-3β,15α-diol (VIII) was prepared in 93% yield by treatment of V with m-chloroperbenzoic acid. 5α-Cholest-8(14)-en-7α-ol-3,15-dione (IX) was prepared in 56% yield by oxidation of VIII with pyridinium chlorochromate followed by treatment of the crude product with acid. Compound IX was also obtained in 72% yield by selective chemical oxidation of 5α-cholest-8(14)-en-3β,7α,15α-triol. 5α-Cholesta-6,8(14)-dien-3,15-dione (X) was prepared in 89% yield by treatment of IX with p-toluenesulfonic acid under controlled conditions. Reduction of X with lithium tri-tert-butoxyaluminum hydride under controlled conditions gave 5α-cholesta-6,8(14)-dien-3β-ol-15-one in 84% yield.  相似文献   

11.
Semisynthetic functionalized triterpenes (4α,14‐dimethyl‐5α,8α‐8,9‐epoxycholestan‐3β‐yl acetate; 4α,14‐dimethyl‐5α‐cholest‐8‐ene‐3,7,11‐trione; 4α,14‐dimethyl‐5α‐cholesta‐7,9(11)‐dien‐3‐one and 4α,14‐dimethyl‐5α‐cholest‐8‐en‐3β‐yl acetate), previously prepared from 31‐norlanostenol, a natural insecticide isolated from the latex of Euphorbia officinarum, have been subjected to oxidation with hydrogen peroxide (H2O2) and iodosobenzene (PhIO) catalyzed by porphyrin complexes (cytochrome P‐450 models) in order to obtain optimized derivatives with high regioselectivity. The main transformations were epoxidation of the double bonds and hydroxylations of non‐activated C–H groups and the reaction products were 25‐hydroxy‐4α,14‐dimethyl‐5α‐cholesta‐7,9(11)‐dien‐3β‐yl acetate (59 %), 25‐hydroxy‐4α,14‐dimethyl‐5α‐cholest‐8‐ene‐3,7,11‐trione (60 %), 4α,14‐dimethyl‐5α,7β‐7,8‐epoxycholest‐9(11)‐en‐3‐one (22 %), 8‐hydroxy‐4α,14‐dimethyl‐5α‐cholest‐9(11)‐ene‐3,7‐dione (16 %), 12α‐hydroxy‐4α,14‐dimethyl‐5α,7β‐7,8‐epoxycholest‐9(11)‐en‐3‐one (16 %), and 4α,14‐dimethyl‐5α,8α‐8,9‐epoxycholestan‐3β‐yl acetate (26 %), respectively. We also investigated the insect (Myzus persicae, Rhopalosiphum padi and Spodoptera littoralis) antifeedant and postingestive effects of these terpenoid derivatives. None of the compounds tested had significant antifeedant effects, however, all were more effective postingestive toxicants on S. littoralis larvae than the natural compound 31‐norlanostenol, with 4α,14‐dimethyl‐5α,8α‐8,9‐epoxycholestan‐3β‐yl acetate being the most active. The study of their structure–activity relationships points out at the importance of C3 and C7 substituents.  相似文献   

12.
The following structure of the O-polysaccharide of Pragia fontium 27480 was elucidated by sugar analysis, including determination of the absolute configurations of the monosaccharides, and Smith degradation along with 1D and 2D 1H and 13C NMR spectroscopy:→4)-β-d-ManpNAc3NAcA-(1→2)-α-l-Rhap-(1→3)-β-l-Rhap-(1→4)-α-d-GlcpNAc-(1→where ManNAc3NAcA stands for 2,3-diacetamido-2,3-dideoxymannuronic acid.  相似文献   

13.
It has been shown that the cultured cells of Nicotiana tabacum “Bright Yellow” are capable of transforming testosterone to Δ4-androstene-3, 17-dione, 5α-androstan-17β-ol-3-one, 5α-androstane-3β, 17β-diol, its dipalmitate and 3- and 17-monoglucosides, epiandrosterone, its palmitate and glucoside, testosterone glucoside. 5α-Androstane-3β, 17β-diol dipalmitate and 3- and 17-monoglucosides, epiandrosterone palmitate and glucoside, and testosterone glucoside have been found for the first time as metabolites of testosterone in plant systems. Δ4-Androstene-3,17-dione was converted to testosterone. 5α-Androstan-17β-ol-3-one, which has been recognized as an active form of testosterone in mammals, was also detected. It has also been demonstrated that [4-14C]testosterone is actively incorporated in these transformations.  相似文献   

14.
The chemical composition of trunk bark oil from Cleistopholis patens (Benth .) Engl . & Diels , growing wild in Côte d'Ivoire, has been investigated by GC (FID) in combination with retention indices, GC/MS and 13C‐NMR. Moreover, one oil sample has been subjected to CC and all the fractions analyzed by GC (RI) and 13C‐NMR. In total, 61 components have been identified, including various sesquiterpene esters scarcely found in essential oils. 13C‐NMR was particularly efficient for the identification of a component not eluted on GC and for the quantification of heat‐sensitive compounds. Then, 36 oil samples, isolated from trunk bark harvested in six Ivoirian forests have been analyzed. The content of the main components varied drastically from sample to sample: (E)‐β‐caryophyllene (0.4 – 69.1%), β‐pinene (0 – 57%), α‐phellandrene (0 – 33.2%), α‐pinene (0.1 – 30.6%), β‐elemol (0.1 – 29.9%), germacrene D (0 – 25.4%), juvenile hormone III (0 – 22.9%), germacrene B (0 – 20.6%) and sabinene (tr‐20.3%). Statistical analysis, hierarchical clustering and principal components analysis, carried out on the 36 compositions evidenced a fair chemical variability of the stem bark oil of this species. Indeed, three clusters have been distinguished: the composition of group I (ten samples) was dominated by β‐pinene and α‐pinene, group II (nine samples) was represented by α‐phellandrene and p‐cymene and group III (16 samples) by β‐elemol. A sample displayed an atypical composition dominated by (E)‐β‐caryophyllene.  相似文献   

15.
Four new cycloartane triterpenes, named huangqiyegenins V and VI and huangqiyenins K and L ( 1 – 4 , resp.), together with nine known triterpenoids, 5 – 13 , and eight flavonoids, 14 – 21 , were isolated from a 70%‐EtOH extract of Astragalus membranaceus leaves. The structures of the new compounds were elucidated by detailed spectroscopic analyses, and the compounds were identified as (9β,11α,16β,20R,24S)‐11,16,25‐trihydroxy‐20,24‐epoxy‐9,19‐cyclolanostane‐3,6‐dione ( 1 ), (9β,16β,24S)‐16,24,25‐trihydroxy‐9,19‐cyclolanostane‐3,6‐dione ( 2 ), (3β,6α,9β,16β,20R,24R)‐16,25‐dihydroxy‐3‐(β‐D ‐xylopyranosyloxy)‐20,24‐epoxy‐9,19‐cyclolanostan‐6‐yl acetate ( 3 ), and (3β,6α,9β,16β,24E)‐26‐(β‐D ‐glucopyranosyloxy)‐16‐hydroxy‐3‐(β‐D ‐xylopyranosyloxy)‐9,19‐cyclolanost‐24‐en‐6‐yl acetate ( 4 ). All isolated compounds were evaluated for their inhibitory activities against LPS‐induced NO production in RAW264.7 macrophage cells. Compounds 1 – 3, 14, 15 , and 18 exhibited strong inhibition on LPS‐induced NO release by macrophages with IC50 values of 14.4–27.1 μM .  相似文献   

16.
The hexane extract of Echinops spinosissimus Turra subsp. spinosus flower heads was analyzed for its fatty acid and sterol composition. Its physicochemical characteristics were also studied. The saponification, iodine and peroxide values were determined as 255 mg KOH/g, 42.57 g I2/100 g and 110 m equiv. O2/kg of oil, respectively. The oleic (C18:1; 61.14%), palmitic (C16:0; 21.36%) and linoleic (C18:2; 10.45%) acids were the dominant fatty acids. This extract was also found to contain high levels of β‐sitosterol and stigmasterol (44.97% and 34.95% of total sterols, respectively). On the other hand, the identification of terpenoid compounds was investigated by using GC/MS, which revealed fourteen major terpenoids mainly taraxasterol, lupeol, pseudotaraxasterol, lup‐22(29)‐en‐3‐yl acetate, taraxasteryl acetate, α‐amyrin, β‐amyrin, pseudotaraxasteryl acetate, hop‐20(29)‐en3‐β‐ol, α‐amirenone, along with β‐sitosterol and stigmasterol. Moreover, we have evaluated the in vitro antibacterial and antifungal activities of the unsaponifiable matter and a fraction isolated from this extract. These activities were conducted using the diffusion disc methods and broth microdilution assay. The resulted fraction from this extract showed the highest antibacterial activity with significant minimum inhibitory concentrations (MIC) values 125.0 μg/ml against Staphylococcus aureus, Micrococcus luteus and Bacillus cereus. However, it did exhibit no substantial antifungal activity.  相似文献   

17.
Leaf oil samples of four different citrus species were prepared from young leaves and the detailed composition of each leaf oil was investigated using gas chromatography, thin-layer chromatography and infrared spectrometry. The following components were identified: α-pinene, α-thujene, β-pinene, limonene, γ-terpinene, p-cymene, p-α-dimethylstyrene, β-humulene, β-selinene, trans-2-hexen-l-al, cis-3-hexen-l-ol, trans-2-hexen-l-ol, linalool terpinen-4-ol and α-terpineol. In addition, camphene, sabinene, β-myrcene, α-terpinene, β-elemene, caryophyllene, neral, geranial, nerol and geraniol were tentatively identified. Most of the components were found to be contained in common in the leaf oils of four different citrus species, but the relative contents of some of the components such as limonene, γ-terpinene, p-cymene, linalool, neral and geranial were distinctly different from species to species. Thus, gas chromatographic analyses of leaf oils seemed to be useful for the identification of citrus species.  相似文献   

18.
From an Argentine collection of Senecio santelisis Phil ., the new furanoeremophilanoids, (10βH)‐6β‐acetoxy‐1α‐hydroxyfuranoeremophilan‐9‐one ( 1 ) and (10βH)‐1α‐hydroxy‐6β‐(propanoyloxy)furanoeremophilan‐9‐one ( 2 ), together with the known (10αH)‐6β‐acetoxy‐1α‐hydroxyfuranoeremophilan‐9‐one ( 3 ), (10αH)‐1α,6β‐diacetoxyfuranoeremophilan‐9‐one ( 4 ), and (10αH)‐1α‐hydroxy‐6β‐(propanoyloxy)furanoeremophilan‐9‐one ( 5 ) were isolated. Their structures and relative configurations were established on the basis of spectroscopic analysis. CHCl3 Extract and pure compounds were evaluated for their antifungal activity. Compound 5 exhibited remarkable mycelial growth inhibition against B. cinerea with an IC50 value of 21.4 μg/ml.  相似文献   

19.
When fresh potato tuber slices were incubated with [1-14C]-sodium acetate, cycloartenol was heavily labelled but no radioactivity was recovered in 24-methylene cycloartanol and free sterols. If potato slices were aged for 0–24 hr before feeding with radioactive acetate, a rapid increase of the label in the sterol precursors and the free sterols was observed. The free sterol content was 5 × higher after ageing for 24 hr. Isofucosterol synthesis was especially stimulated. The synthesis of sterols during the ageing process seems to be related to the appearance of a cycloartenol C24-methylase and may be linked to a biogenesis of membranes.Nomenclature: (1) 4,4,14α-trimethyl 9β, 19β-cyclo-5α-cholest-24-en 3β-ol; (2) 4,4,14α-trimethyl 9β, 19β-cyclo-5α-ergost-24(28)-en 3β-ol; (3) 4α,14α-dimethyl 9β,19β-cyclo 5α-ergost 24(28)-en 3β-ol; (4) 4α, 14α-dimethyl 5α-ergosta 8.24(28)-dien 3β-ol; (5) 4α-methyl 5α-ergosta 7,24(28)-dien 3β-ol; (6) ergosta 5,24(28)-dien 3β-ol; (7) stigmasta 5,Z-24(28)-dien 3β-ol; (8) (24R)-24 methyl cholest 5-en 3β-ol; (9) (24R)-24 ethyl cholest 5-en 3β-ol; (10) (24S)-24 ethyl cholesta 5,E-22(23)-dien 3β-ol; (11) cholest 5-en 3β-ol.  相似文献   

20.
Enzymatic transglycosylation using four possible monodeoxy analogs of p-nitrophenyl α-D-glucopyranoside (Glcα-O-pNP), modified at the C-2, C-3, C-4, and C-6 positions (2D-, 3D-, 4D-, and 6D-Glcα-O-pNP, respectively), as glycosyl donors and six equivalents of ethyl β-D-thioglucopyranoside (Glcβ-S-Et) as a glycosyl acceptor, to yield the monodeoxy derivatives of glucooligosaccharides were done. The reaction was catalyzed using purified Aspergillus niger α-glucosidase in a mixture of 50 mM sodium acetate buffer (pH 4.0)/CH3CN (1: 1 v/v) at 37°C. High activity of the enzyme was observed in the reaction between 2D-Glcα-O-pNP and Glcβ-S-Et to afford the monodeoxy analogs of ethyl β-thiomaltoside and ethyl β-thioisomaltoside that contain a 2-deoxy α-D-glucopyranose moiety at their glycon portions, namely ethyl 2-deoxy-α-D-arabino-hexopyranosyl-(1,4)-β-D-thioglucopyranoside and ethyl 2-deoxy-α-D-arabino-hexopyranosyl-(1,6)-β-D-thioglucopyranoside, in 6.72% and 46.6% isolated yields (based on 2D-Glcα-O-pNP), respectively. Moreover, from 3D-Glcα-O-pNP and Glcβ-S-Et, the enzyme also catalyzed the synthesis of the 3-deoxy analog of ethyl β-thioisomaltoside that was modified at the glycon α-D-glucopyranose moiety, namely ethyl 3-deoxy-α-D-ribo-hexopyranosyl-(1,6)-β-D-thioglucopyranoside, in 23.0% isolated yield (based on 3D-Glcα-O-pNP). Products were not obtained from the enzymatic reactions between 4D- or 6D-Glcα-O-pNP and Glcβ-S-Et.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号