首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Defatted soybean extract was fractionated into protein fractions and low molecular weight fractions with gel filtration. NAD-dependent aldehyde dehydrogenase from bovine liver mitochondria and from yeast was found to oxidize aldehyde in both fractions. These enzymes, therefore, were used to determine the quantity of aldehyde. When the protein fraction obtained by gel filtration was subjected to gel filtration again, aldehyde was recovered in the protein fractions. The level of aldehyde in the protein fractions was unchanged before and after digestion of the protein with pepsin. When the soybean extract was incubated beforehand with aldehyde dehydrogenase and NAD+ and the subjected to gel filtration, no aldehyde was detected in the protein fractions. These results indicate that aldehyde dehydrogenase acts on the soybean protein-bound aldehyde. Alcohol dehydrogenase from horse liver in the presence of NADH did not convert the bound aldehyde to alcohol.

A large portion of the aldehyde in the extract was separated from the protein by acid precipitation of the protein. Aldehyde dehydrogenase acts on the aldehyde remaining in the protein after acid precipitation. Thus acid precipitation helps to save NAD+ required for complete removal of aldehyde from the soybean protein by aldehyde dehydrogenase.  相似文献   

2.
Aldehyde oxidase (aldehyde: oxygen oxidoreductase, EC 1.2.3.1) was partially purified from bovine liver. The enzyme irreversibly oxidized various aldehydes to the corresponding acids by using dissolved oxygen as an electron acceptor. Although the Km value for n-hexanal was low (6 µm), that for acetaldehyde was high (20 mm).

Medium-chain aldehydes such as hexanal and pentanal appear to be mainly responsible for green beany odor of soybean products. A great reduction in the beany odor was observed after the soybean extract was incubated with aldehyde oxidase under aerobic conditions. Dissolved oxygen was utilized as the electron acceptor throughout the enzyme-catalyzed oxidation of aldehydes and none of other cofactors were found to be required.

It has been shown that bovine liver mitochondrial aldehyde dehydrogenase oxidizes the soybean protein-bound aldehyde with a rate comparable to that for free n-hexanal (Agric. Biol. Chem., 43, in press). Comparative studies of aldehyde oxidase and aldehyde dehydrogenase with respect to oxidation-rates of free aldehydes and the soybean protein-bound aldehydes indicated that aldehyde oxidase acted on the bound aldehyde with a much slower rate.  相似文献   

3.
《Phytochemistry》1986,26(1):89-92
Aldehyde production by intact apples was monitored by reversed phase HPLC of headspace concentrates, after reaction with 2,4-dinitrophenylhydrazine. Depending on the degree of maturity and their storage history, Golden Delicious apples showed a variable headspace composition, differences being mostly of a quantitative nature. Whereas the headspace of pre-climacteric fruits was particularly rich in C1C6 aldehydes, that of climacteric, ripening apples was greatly reduced, and some aldehydes were only present in trace amounts. Treatment of pre-climacteric or cold stored fruits with carboxylic acid vapours had a negligible effect on the aldehyde composition. Controlled atmospheric storage, however, led to a notable increase in the aldehydes derived from the added carboxylic acids or from those shortened by β-oxidation. This confirms the presence of a reductive path of carboxylic acids into aldehydes. Further results suggest that high carbon dioxide (CA-storage) interferes with carboxylic acid metabolism and alcohol dehydrogenase activity, leading to a deterioration of the aroma quality.  相似文献   

4.
5.
Using qualitative and microquantitative histo-chemical techniques, alcohol dehydrogenase and aldehyde dehydrogenase activity was studied in the gastric mucosa of male and female rats. Alcohol dehydrogenase was demonstrated by staining reactions with maximum activity in surface and neck cells and with clearly weaker activity also in parietal cells. Aldehyde dehydrogenase could be detected in surface and neck cells, and also to a comparable degree in the parietal cells. Quantitative analyses of microdissected samples yielded high values for alcohol dehydrogenase activity exclusively in the superficial part of the gastric mucosa, whereas low-Km aldehyde dehydrogenase activity showed a decreasing gradient from the surface to the deeper parts of the mucosa. Sex differences could not be confirmed.  相似文献   

6.
Using qualitative and microquantitative histochemical techniques, alcohol dehydrogenase and aldehyde dehydrogenase activity was studied in the gastric mucosa of male and female rats. Alcohol dehydrogenase was demonstrated by staining reactions with maximum activity in surface and neck cells and with clearly weaker activity also in parietal cells. Aldehyde dehydrogenase could be detected in surface and neck cells, and also to a comparable degree in the parietal cells. Quantitative analyses of microdissected samples yielded high values for alcohol dehydrogenase activity exclusively in the superficial part of the gastric mucosa, whereas low-K m aldehyde dehydrogenase activity showed a decreasing gradient from the surface to the deeper parts of the mucosa. Sex differences could not be confirmed.Dedicated to Professor Dr. K.S. Ludwig on the occasion of his 70th birthday  相似文献   

7.
We have proposed developing rat hepatoma cell lines as an in vitro model for studying the regulation of changes in aldehyde dehydrogenase activity occurring duringhepatocarcinogenesis. Aldehyde dehydrogenase purified in a single step from HTC rat hepatoma cells is identical to the aldehyde dehydrogenase isolated from rat hepatocellular carcinomas. HTC aldehyde dehydrogenase is a 110 kDa dimer composed of 54-kDa subunits, prefers NADP+ as coenzyme, and preferentially oxidizes benzaldehyde-like aromatic aldehydes but not phenylacetaldehyde. The substrate and coenzyme specificity, effects of disulfiram, pH profile and isoelectric point of HTC aldehyde dehydrogenase are also identical to these same properties of the tumor aldehyde dehydrogenase. In immunodiffusions, both isozymes are recognized with complete identity by anti-HTC aldehyde dehydrogenase antibodies. Having established that HTC aldehyde dehydrogenase is very similar, if not identical, to the aldehyde dehydrogenase found in hepatocellular carcinomas, simplifies the development of molecular probes for examination of the regulation of tumor aldehyde dehydrogenase activity in vivo and in vitro.  相似文献   

8.
Aldehyde reductases (alcohol: NADP+-oxidoreductases, EC 1.1.1.2) I and II from human placenta have been purified to homogeneity. Aldehyde reductase I, molecular weight about 74 000, is a dimer of two nonidentical subunits of molecular weigths of about 32 500 and 39 000, whereas aldehyde erductase II is a monomer of about 32 500. Aldehyde reductase I can be dissociated into subunits under high ionic concentrations. The isoelectric pH for aldehyde reductases I and II are 5.76 and 5.20, respectively. Amino acid compositions of the two enzymes are significantly different. Placenta aldehyde reductase I can utilize glucose with a lower affinity, whereas aldehyde reductase II is not capable to reducing aldo-sugars. Similarly, aldehyde reductase I does not catalyse the reduction of glucuronate while aldehyde reductase II has a high affinity for glucuronate. Both enzymes, however, exhibit strong affinity towards various other aldehydes such as glyceraldehyde, propionaldehyde, and pyridine-3-aldehyde. The pH optima for aldehyde reductases I and II are 6.0 and 7.0, respectively. Aldehyde reductaase I can use both NADH and NADPH as cofactors, whereas aldehyde reductase II activity is dependent on NADPH only. Both enzymes are susceptible to inhibition by sulfhydryl group reagents, aldose reductase inhibitors, lithium sulfate, and sodium chloride to varying degrees.  相似文献   

9.
Esterases are widely used in food processing industry, but there is little information concerning enzymes involved in decompositions of esters contributing to pollution of environment. Vinyl acetate (an ester of vinyl alcohol and acetic acid) is a representative of volatile organic compounds (VOCs) in decomposition, of which hydrolyses and oxidoreductases are mainly involved. Their activities under periodically changing conditions of environment are essential for the removal of dangerous VOCs. Esterase and alcohol/aldehyde dehydrogenase activities were determined in crude cell extract from Pseudomonas fluorescens PMC 2123 after vinyl acetate induction. All examined enzymes exhibit their highest activity at 30–35 °C and pH 7.0–7.5. Esterase preferably hydrolyzed ester bonds with short fatty chains without plain differences for C2 or C4. Comparison of Km values for alcohol and aldehyde dehydrogenases for acetaldehyde suggested that this metabolite was preferentially oxidized than reduced. Activity of alcohol dehydrogenase reducing acetaldehyde to ethanol suggested that one mechanism of defense against the elevated concentration of toxic acetaldehyde could be its temporary reduction to ethanol. Esterase activity was inhibited by phenylmethanesulfonyl fluoride, while β-mercaptoethanol, dithiothreitol, and ethylenediaminetetraacetic acid had no inhibitor effect. From among metal ions, only Mg2+ and Fe2+ stimulated the cleavage of ester bond.  相似文献   

10.
Aldehyde dehydrogenase (ALDH, EC 1.2.1.3) of the human prostate was the subject of investigation in this study. The possible physiological role of aldehyde dehydrogenase in the human prostate might be to detoxify aldehydes arising from the oxidation of the polyamines via monoamine or diamine oxidases. The specific activity of the enzyme with 1 mM propionaldehyde as substrate and 0.5 mM NAD at pH 7.4 in the control normal prostates and prostates afflicted with the disease, benign prostatic hyperplasia (BPH), was 26.06 +/- 2.96 and 5.17 +/- 0.48 nmol/g prostate per min, respectively. When 100 microM gamma-aminobutyraldehyde was used as a substrate, the specific activity in the normal controls and prostates with benign prostatic hyperplasia was 19.80 +/- 1.33 and 2.95 +/- 2.46 nmol/g prostate per min, respectively. Upon isoelectric focusing of the extracts of the control prostates when the gels were developed for aldehyde dehydrogenase activity, there were three aldehyde dehydrogenase activity bands visible, pI 4.9 (mitochondrial), 5.4 (cytosolic) and about 6.0-6.5, on the IEF gels developed with gamma-aminobutyraldehyde as a substrate. With the extracts of prostates with benign prostatic hyperplasia the pI 4.9 band was significantly reduced, the pI 5.4 band enhanced and the approx. pI 6.0 band was not detectable on the IEF gels with propionaldehyde as a substrate. There was no detectable aldehyde dehydrogenase activity in the extract of the prostate with cancer on IEF gels nor in the activity assays with propionaldehyde or gamma-aminobutyraldehyde as substrates.  相似文献   

11.
Aldehyde dehydrogenase from Pseudomonas testosteroni was purified to homogeneity. The enzyme has a pH optimum of 8.2, uses a wide range of aldehydes as substrates and cationic dyes (Wurster's blue, phenazine methosulphate and thionine), but not anionic dyes (ferricyanide and 2.6-dichloroindophenol), NAD(P)+ or O2, as electron acceptors. Haem c and pyrroloquinoline quinone appeared to be absent but the common cofactors of molybdenum hydroxylases were present. Xanthine was not a substrate and allopurinol was not an inhibitor. Alcohols were inhibitors only when turnover of the enzyme occurred in aldehyde conversion. The enzyme has a relative molecular mass of 186,000, consists of two subunits of equal size (Mr 92,000), and 1 enzyme molecule contains 1 FAD, 1 molybdopterin cofactor, 4 Fe and 4 S. It is a novel type of NAD(P)+-independent aldehyde dehydrogenase since its catalytic and physicochemical properties are quite different from those reported for already known aldehyde-converting enzymes like haemoprotein aldehyde dehydrogenase (EC 1.2.99.3), quino-protein alcohol dehydrogenases (EC 1.1.99.8) and molybdenum hydroxylases.  相似文献   

12.
Aldehyde dehydrogenases catalyze the pyridine nucleotide-dependent oxidation of aldehydes to acids. Seventeen enzymes are currently viewed as belonging to the human aldehyde dehydrogenase superfamily. Summarized herein, insofar as the information is available, are the structural composition, physical properties, tissue distribution, subcellular location, substrate specificity, and cofactor preference of each member of this superfamily. Also summarized are the chromosomal locations and organization of the genes that encode these enzymes and the biological consequences when enzyme activity is lost or substantially diminished. Broadly, aldehyde dehydrogenases can be categorized as critical for normal development and/or physiological homeostasis (1). even when the organism is in a friendly environment or (2). only when the organism finds itself in a hostile environment. The primary, if not sole, evolved raison d'être of first category aldehyde dehydrogenases appears to be to catalyze the biotransformation of a single endobiotic for which they are relatively specific and of which the resultant metabolite is essential to the organism. Most of the human aldehyde dehydrogenases for which the relevant information is available fall into this category. Second category aldehyde dehydrogenases are relatively substrate nonspecific and their evolved raison d'être seems to be to protect the organism from potentially harmful xenobiotics, specifically aldehydes or xenobiotics that give rise to aldehydes, by catalyzing their detoxification. Thus, the lack of a fully functional first category aldehyde dehydrogenase results in a gross pathological phenotype in the absence of any insult, whereas the lack of a functional second category aldehyde dehydrogenase is ordinarily of no consequence with respect to gross phenotype, but is of consequence in that regard when the organism is subjected to a relevant insult.  相似文献   

13.
Aldehyde dehydrogenase activity (KF 1.2.1.3) of cytosol fractions of brain structures (hypothalamus, midbrain and new cortex) as well as dophamine content in these structures were studied in comparative aspect in rats preferring and rejection ethanol. It has been shown that there were two isoforms of aldehyde dehydrogenases (aldehyde dehydrogenase 1 and aldehyde dehydrogenase 2) in cytosol fractions of all investigated brain structures of animals preferring ethanol while only aldehyde dehydrogenase 2 has been found in the new cotex of rats rejecting ethanol. Thus, aldehyde-dehydrogenase activity is higher in the animals preferring ethanol than in those ones rejecting ethanol. Content of dophamine in the rats preferring ethanol is higher than in those ones rejecting ethanol both in the hypothalamus and new cortex. Differences between the studied groups of animals can underlie the pathologic attraction to alcohol.  相似文献   

14.
1. Aldehyde dehydrogenase activity was determined in whole blood samples from 17 selected vertebrates of 5 classes, using 3,4-dihydroxyphenylacetaldehyde (the aldehyde derived from dopamine) as substrate. 2. Aldehyde dehydrogenase activity in blood was widely but unevenly distributed among the species studied. 3. Mean aldehyde dehydrogenase activities in the range of 40-140 nmol/min.ml blood (measured at 37 degrees C, pH 8.8) were found in blood from man, monkey, rabbit, guinea pig and mouse (C57BL and NMRI strains), with the highest activity in rabbit blood. 4. Much lower aldehyde dehydrogenase activities (0.5-7.5 nmol/min.ml blood) were found in blood from Sprague-Dawley and Wistar rat, dog, cat, horse, pig, chicken, caiman, frog and rainbow trout, whereas the activities in blood from DBA mouse, cow, sheep and crucian carp were close to the detection limit.  相似文献   

15.
Summary In the final step of the pathway producing ethanol in anoxic crucian carp (Carassius carassius L.), acetaldehyde is reduced to ethanol by alcohol dehydrogenase. The presence of aldehyde dehydrogenase in the tissues responsible for ethanol production could cause an undesired oxidation of acetaldehyde to acetate coupled with a reduction of NAD+ to NADH. Moreover, acetaldehyde could competitively inhibit the oxidation of reactive biogenic aldehydes. In the present study, the distribution of aldehyde dehydrogenase (measured with a biogenic aldehyde) and alcohol dehydrogenase (measured with acetaldehyde) were studied in organs of crucian carp, common carp (Cyprinus carpio L.), rainbow trout (Salmo gairdneri Richardson), and Norwegian rat (Rattus norvegicus Berkenhout). The results showed that alcohol dehydrogenase and aldehyde dehydrogenase activities were almost completely spatially separated in the crucian carp. These enzymes occurred together in the other three vertebrates. In the crucian carp, alcohol dehydrogenase was only found in red and white skeletal muscle, while these tissues contained exceptionally low aldehyde dehydrogenase activities. Moreover, the low aldehyde dehydrogenase activity found in crucian carp red muscle was about 1000 times less sensitive to inhibition by acetaldehyde than that found in other tissues and other species. The results are interpreted as demonstrating adaptations to avoid a depletion of ethanol production, and possibly inhibition of biogenic aldehyde metabolism.Abbreviations ADH alcohol dehydrogenase - ALDH aldehyde dehydrogenase - DOPAL 3,4-dihydroxyphenylacetaldehyde - MAO monoamine oxidase - PCA perchloric acid  相似文献   

16.
ALDEHYDE derivatives of catecholamines and of indoleamines, for example, of serotonin, are formed in the brain by the action of monoamine oxidase (MAO)1,2. Further metabolic transformation proceeds via an NAD-dependent aldehyde dehydrogenase (ADH)3,4 and an NADPH-dependent aldehyde reductase (ADR)5, which has been shown to be inhibited by low concentrations of barbiturates, both in vitro6,7 and in vivo8. Aldehyde dehydrogenase, on the other hand, has a wide substrate specificity and a given substrate may compete for oxidation with others (such as competition between acetaldehyde and 5-hydroxyindoleacetaldehyde9). These metabolic relationships would be expected, in proper circumstances (that is, in the presence of barbiturates or acetaldehyde), to increase the steady state concentration of aldehyde intermediates of biogenic amines.  相似文献   

17.
The alcohol dehydrogenase from horse liver is able to catalyze the oxidation of a number of 1,2-diols and α-aminoalcohols enantioselectively to l-α-hydroxyaldehydes and l-α-amino aldehydes. A decrease of enantioselectivity was found in reactions with 1,3-diols and substrates with hydrophobic substituent at position 3. α-Aminoalcohols are not substrates for yeast alcohol dehydrogenase, but the enzyme can catalyze the oxidation of most of the diols to l-hydroxyaldehydes. New methods for determination of the optical purity of α-hydroxy-and α-aminoaldehydes via converting them in situ to the corresponding acids, catalyzed by the aldehyde dehydrogenase from yeast, have been developed. The coupled alcohol dehydrogenase/aldehyde dehydrogenase has been extended to preparatory scale synthesis of optically pure l-α-hydroxyacids in the presence of a cofactor regeneration system. The active-site cubic-space section model has been shown not to be applicable to all substrates.  相似文献   

18.
In the transition phase of Candida apicola IMET 43747 from logarithmic to stationary growth a pyridine-nucleotide-independent alcohol oxidase was induced coinciding with the beginning of sophorose lipid production. This enzyme was not repressed by glucose and was measurable in stationary cells grown on glucose or on a mixture of n-hexadecane and glucose. An NAD+-dependent aldehyde dehydrogenase behaved in the same way. Both enzymes were localized in the microsomal fraction. The alcohol oxidase accepted long-chain (fatty) aliphatic alcohols (C8 to at least C16) and diols starting from decanediol. Trace activities were found with -hydroxy fatty acids. Aromatic, secondary and tertiary alcohols were not oxidized. In the stationary growth phase the substrate specificity of the alcohol oxidase tends to be changed to more hydrophobic substrates. The physiological role of both enzymes, the alcohol oxidase and aldehyde dehydrogenase, is discussed including their possible involvement in the synthesis of sophorose lipid. Correspondence to: R. K. Hommel  相似文献   

19.
The aldehyde dehydrogenase (Aldehyde:NAD(P) oxidoreductase E.C. 1.2.1.3. and 1.2.1.5) phenotype in several tissues of the Mongolian gerbil, Meriones unguiculatus, has been established. The tissue distribution of gerbil aldehyde dehydrogenase is similar to that of the rat, with liver possessing the majority of the aldehyde dehydrognease activity. Male kidney and testis possess significantly more activity than female kidney and ovary. The substrate and co-enzyme specificity of gerbil liver aldehyde dehydrogenase is also similar to that of rat and mouse liver. Gel isoelectric focusing resolves one major gerbil liver aldehyde dehydrogenase isozyme at pI 5.3. Mouse liver is resolved into two major isozymes at pIs 5.3 and 5.6 and rat liver aldehyde dehydrogenase into one major isozyme at pI 5.4. Gerbil liver aldehyde dehydrogenase is functional over a broad pH range with an optima at pH 9.0. Rat and mouse liver aldehyde dehydrogenase possess sharp pH optima at pH 8.5.  相似文献   

20.
Characterization of aldehyde dehydrogenase from HTC rat hepatoma cells   总被引:1,自引:0,他引:1  
We have proposed developing rat hepatoma cell lines as an in vitro model for studying the regulation of changes in aldehyde dehydrogenase activity occurring during hepatocarcinogenesis. Aldehyde dehydrogenase purified in a single step from HTC rat hepatoma cells is identical to the aldehyde dehydrogenase isolated from rat hepatocellular carcinomas. HTC aldehyde dehydrogenase is a 100 kDa dimer composed of 54-kDa subunits, prefers NADP+ as coenzyme, and preferentially oxidizes benzaldehyde-like aromatic aldehydes but not phenylacetaldehyde. The substrate and coenzyme specificity, effects of disulfiram, pH profile and isoelectric point of HTC aldehyde dehydrogenase are also identical to these same properties of the tumor aldehyde dehydrogenase. In immunodiffusion, both isozymes are recognized with complete identity by anti-HTC aldehyde dehydrogenase antibodies. Having established that HTC aldehyde dehydrogenase is very similar, if not identical, to the aldehyde dehydrogenase found in hepatocellular carcinomas, simplifies the development of molecular probes for examination of the regulation of tumor aldehyde dehydrogenase activity in vivo and in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号