首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmin cleaves isolated human beta-casein to form specific fragments in a manner similar to the generation of gamma 1-, gamma 2-, and gamma 3-caseins from the bovine homologue. Identification of a protein previously isolated from human milk as a specific plasmin cleaved portion of beta-casein indicates that endogenous plasmin is active in whole milk. These findings suggest that protease activity should be considered in casein quantitation or isolation of components from human milk.  相似文献   

2.
Occurrence of milk acid protease in bovine casein in addition to alkaline protease was found and purification of this enzyme was achieved. The enzyme had a pH optimum at 4.0 and was most stable at pH 3.5. The molecular weight of the enzyme was 36,000 and no inhibition was observed by diisopropyl-fluorophosphate, EDTA etc. This enzyme is considered to be similar to cathepsin D.

Milk acid protease mainly hydrolyzed αs-casein and similar change was observed in autolysis of casein at pH 5.5. It is suggested that milk acid protease may have some significance in cheese ripening.  相似文献   

3.
Milk and whey samples from healthy and inflamed udder quarters of 10 Ayrshire cows were analyzed for proteolytic activity using radial caseolysis procedures, a fluorogenic coumaryl peptide substrate, and casein agarose zymography. Free lysosomal enzyme activity (N–acetyl–beta–D–glucosaminidase) was used as the criterion for inflammation. All mastitic milk samples had proteolytic activity, tentatively identified as plasmin (comigration at Mr 83 000 and characteristic fragmentation). The plasmin activities in mastitic milk were on average 2.9 μg/ml (range 0.5–12.5) as measured by radial caseolysis. Milk or whey specimens from healthy quarters were all negative except 1 in which an activity of 0.1 μg/ml was found in both specimens. The caseolytic activities were totally inhibited by 50 KITJ/ml of aprotinin, a serine proteinase inhibitor from bovine lung. No free plasminogen activator (PA) activity was found in any of the samples. Howewer, according to zymographic analyses PA molecules corresponding to urokinase were found in healthy and especially in mastitic specimens. Analysis of plasmin may provide an alternative means of screening for mastitic milk samples.  相似文献   

4.
Until recently, the role of the proteolytic system involving serine proteases in follicle rupture during ovulation in mammalian species has been a subject of controversy. We undertook the present study to examine whether proteases play a role in follicle rupture using the teleost medaka (Oryzias latipes) model. Various serine protease inhibitors, including a specific plasmin inhibitor, drastically reduced the rate of ovulation, as assessed by an in vitro ovulation assay, which was established for the fish. Biochemical, molecular biological, and immunological analyses demonstrated that plasminogen/plasmin was present in large follicles destined to ovulate. The active protease, plasmin, was detected in follicles approximately 3-7 h before the expected time of ovulation. Specific antibodies against the medaka plasmin light chain suppressed the ovulation rate of the follicles when antibodies were added to the medium during the period in which active plasmin was generated. This finding was an indication that a plasmin-like protease similar if not identical to plasmin plays a role in follicle rupture during ovulation in the medaka. Our data also indicate that this serine protease participates in the rupture for only a few hours prior to the activation of matrix metalloproteinase (Mmp)-mediated hydrolysis at ovulation. Based on our previous and current data, we propose a follicle rupture model involving two different proteolytic enzyme systems, serine protease and Mmp, in medaka ovulation. The current study is the first to provide evidence of the indispensable role of plasmin or a plasmin-like protease in the ovulation of a nonmammalian vertebrate species.  相似文献   

5.
Heterologous production of bovine plasmin was studied in the industrially relevant bacterium Lactococcus lactis. Two sets of lactococcal gene expression signals were coupled to the region of the plasmin gene coding for the serine protease domain. When the promoter region of the prtP gene was used, plasmin was detected mainly intracellularly in strain BPL25 by Western blot hybridization. The intracellular presence of plasmin led to physiological stress. Expression of the plasmin gene driven by the promoter and complete signal sequence of the lactococcal usp45 gene resulted in efficient plasmin secretion in strain BPL420. Cell lysis was observed in strains producing plasmin fragments including the catalytic domain, but not in control strains, which only produced a non-catalytic region of plasmin. The plasmin produced was shown to be biologically active. Received: 2 December 1996 / Received revision: 17 March 1997 / Accepted: 27 April 1997  相似文献   

6.
A cystein protease inhibitor was identified in the basic fraction of bovine milk. We have reported in our previous study that the milk basic protein (MBP) fraction suppressed osteoclast-mediated bone resorption in vitro. Since osteoclasts secreted cystein protease to digest collagen in the bone matrix, we identified the cystein protease inhibitor in MBP. A 12-kDa inhibitor was purified from MBP by papain affinity gel chromatography and subsequent Hi-Load Superdex 75 gel filtration chromatography. The N-terminal sequence of the 18 amino acid residues of the inhibitor corresponded to bovine cystatin C. The 12-kDa cystein protease inhibitor in MBP therefore seemed to be cystatin C. Purified cystatin suppressed bone resorption with the use of isolated osteoclasts in vitro. Cystatin in MBP is suggested as one of the factors inhibiting bone resorption.  相似文献   

7.
Enzymatic milk coagulation for cheese manufacturing involves the cleavage of the scissile bond in kappa-casein by an aspartic acid protease. Bovine chymosin is the preferred enzyme, combining a strong clotting activity with a low general proteolytic activity. In the present study, we report expression and enzymatic properties of recombinant camel chymosin expressed in Aspergillus niger. Camel chymosin was shown to have different characteristics than bovine chymosin. Camel chymosin exhibits a 70% higher clotting activity for bovine milk and has only 20% of the unspecific protease activity for bovine chymosin. This results in a sevenfold higher ratio of clotting to general proteolytic activity. The enzyme is more thermostable than bovine chymosin. Kinetic analysis showed that half-saturation is achieved with less than 50% of the substrate required for bovine chymosin and turnover rates are lower. While raw camel milk cannot be clotted with bovine chymosin, a high clotting activity was found with camel chymosin.  相似文献   

8.
Streptokinase may be less effective at saving lives in patients with heart attacks because it explosively generates plasmin in the bloodstream at sites distant from fibrin clots. We hypothesized that this rapid plasmin generation is due to SK's singular capacity to nonproteolytically generate the active protease SK x Pg*, and we examined whether the kringle domains regulate this process. An SK mutant lacking Ile-1 (deltaIle1-SK) does not form SK x Pg*, although it will form complexes with plasmin that can activate plasminogen. When compared to SK, deltaIle1-SK diminished the generation of plasmin in plasma by more than 30-fold, demonstrating that the formation of SK x Pg* plays an important role in SK activity in the blood. The rate of SK x Pg* formation (measured by an active site titrant) was much slower in Glu-Pg, which contains five kringle domains, than in Pg forms containing one kringle (mini-Pg) or no kringles (micro-Pg). In a similar manner, Streptococcus uberis Pg activator (SUPA), an SK-like molecule, generated SUPA x Pg* much slower with bovine Pg than bovine micro-Pg. The velocity of SK x Pg* formation was regulated by agents that influence the conformation of Pg through interactions with the kringle domains. Chloride ions, which maintain the compact Pg conformation, hindered SK x Pg* formation. In contrast, epsilon-aminocaproic acid, fibrin, and fibrinogen, which induce an extended Pg conformation, accelerated the formation of SK x Pg*. In summary, the explosive generation of plasmin in blood or plasma, which diminishes SK's therapeutic effects, is attributable to the formation of SK x Pg*, and this process is governed by kringle domains.  相似文献   

9.
Invasive bacterial pathogens intervene at various stages and by various mechanisms with the mammalian plasminogen/plasmin system. A vast number of pathogens express plasmin(ogen) receptors that immobilize plasmin(ogen) on the bacterial surface, an event that enhances activation of plasminogen by mammalian plasminogen activators. Bacteria also influence secretion of plasminogen activators and their inhibitors from mammalian cells. The prokaryotic plasminogen activators streptokinase and staphylokinase form a complex with plasmin(ogen) and thus enhance plasminogen activation. The Pla surface protease of Yersinia pestis resembles mammalian activators in function and converts plasminogen to plasmin by limited proteolysis. In essence, plasminogen receptors and activators turn bacteria into proteolytic organisms using a host-derived system. In Gram-negative bacteria, the filamentous surface appendages fimbriae and flagella form a major group of plasminogen receptors. In Gram-positive bacteria, surface-bound enzyme molecules as well as M-protein-related structures have been identified as plasminogen receptors, the former receptor type also occurs on mammalian cells. Plasmin is a broad-spectrum serine protease that degrades fibrin and noncollagenous proteins of extracellular matrices and activates latent procollagenases. Consequently, plasmin generated on or activated by Haemophilus influenzae, Salmonella typhimurium, Streptococcus pneumoniae, Y. pestis, and Borrelia burgdorferi has been shown to degrade mammalian extracellular matrices. In a few instances plasminogen activation has been shown to enhance bacterial metastasis in vitro through reconstituted basement membrane or epithelial cell monolayers. In vivo evidence for a role of plasminogen activation in pathogenesis is limited to Y. pestis, Borrelia, and group A streptococci. Bacterial proteases may also directly activate latent procollagenases or inactivate protease inhibitors of human plasma, and thus contribute to tissue damage and bacterial spread across tissue barriers.  相似文献   

10.
We present evidence that over-expression of human plasminogen, the precursor to the serine protease plasmin, can be cytotoxic to mammalian cells. When an expression vector containing plasminogen cDNA is transfected into baby hamster kidney cells, the number of drug-resistant colonies as well as the levels of plasminogen secreted by those colonies is lower than observed in similar transfections of other protease precursor genes. The recombinant plasminogen accumulates intracellularly as degraded NH2-terminal fragments. In contrast, a mutant of plasminogen that produces inactive plasmin (active site Ser740 changed to Ala) is synthesized by these cells as a full-length plasminogen molecule, and the colony numbers and expression levels are normal. Thus, the generation of plasmin activity is responsible for the cytotoxic phenomena and the degradation associated with plasminogen expression. In addition, experiments using a plasminogen mutant that cannot be activated to plasmin (activation cleavage site Arg560 to Gly) or using coexpression of antisense urokinase RNA indicate that an endogenous plasminogen activator is responsible for converting newly synthesized plasminogen to plasmin. Finally, coexpression of plasminogen with alpha 2-plasmin inhibitor, a serpin which is the physiologic inhibitor of plasmin, prevents the toxic effects of intracellular plasmin activity and allows the synthesis and secretion of native human plasminogen.  相似文献   

11.
Human embryonic lung (HuEL) cells in culture produce large amounts of the enzyme, plasminogen activator, and thus generate substantial amounts of active plasmin. Despite the presence of plasmin, however, HuEL cells grow in ordered, flattened, adherent sheets. It seemed of interest to characterize protease inhibitors that might be present in HuEL cultures and which might account for this apparent contradiction. This paper reports the isolation and purification of the major serine protease inhibitor in 5-day serum-free conditioned medium (CM) from HuEL cells, and the purification of an identical molecule from fetal bovine serum (FBS). Both the CM-derived inhibitor and the FBS-derived inhibitor are identical with fetuin, the major glycoprotein of FBS. The CM-derived inhibitor is apparently derived from the FBS used to supplement the growth medium of HuEL cells between serum-free CM collection periods. It is not labeled metabolically with 3H-leucine. Its electrophoretic behavior is indistinguishable from that of standard fetuin in SDS-PAGE, non-SDS basic pH,PAGE, and isoelectric focusing. The CM-derived inhibitor and standard fetuin inhibit trypsin and plasmin with similar efficiencies, but neither inhibits chymotrypsin, pancreatic elastase, or plasminogen activator. They are immunologically indistinguishable. The suggestion is made that fetuin, and possibly other protease inhibitors present in HuEL cell cultures, may be concentrated locally by HuEL cells and gradually released back into the medium in the absence of serum. These molecules may serve to protect HuEL cells against proteases they generate.  相似文献   

12.
W H Beers 《Cell》1975,6(3):379-386
Plasminogen, plasminogen activator, protease inhibitors, and a proteolytic activity are shown to be present in bovine follicular fluid. Much of the proteolytic activity appears to be due to plasmin. In addition, plasminogen activator activity can be demonstrated in follicle wall homogenates. Evidence that plasmin decreases the tensile strength of follicle wall preparations is also reported. The potential for the involvement of these substances in ovulation is discussed.  相似文献   

13.
Fragmentation of performic acid-oxidized bovine pituitary growth hormone with plasmin has been investigated. It was found that not all tryptic-sensitive bonds were cleaved by plasmin, and that most of the peptide fragments from plasmin digest were derived from the carboxyl terminal portion of the bovine growth hormone molecule.  相似文献   

14.
T Akaike  A Molla  M Ando  S Araki    H Maeda 《Journal of virology》1989,63(5):2252-2259
We examined the effect of a serratial exoprotease on the pathogenesis of influenza virus infection in mice as a model of complicated respiratory infection by bacteria and virus in humans. The 56-kilodalton (56-kDa) protease from Serratia marcescens was administrated intranasally to mice at a dose of 10, 20, or 40 micrograms from day 0 to day 3 after inoculation of the influenza virus. Administration of the protease resulted in remarkable enhancement of the lethal effect of the virus and enhancement of pathological changes in the lungs. Influenza virus replication, determined by plaque-forming assay, was accelerated by the protease. Namely, we found a 100-fold increase in virus yield by day 2. The 56-kDa protease caused generation of plasmin activity in the lungs. In vitro experiments showed that plasmin greatly enhanced the yield of influenza virus, although the effect of the 56-kDa protease by itself was much lower than that of plasmin. Furthermore, the 56-kDa protease could induce plasmin production indirectly via activation of plasminogen by the Hageman factor-dependent cascade in the in vitro system. We conclude that this major serratial exoprotease has a deleterious effect on mice infected with influenza virus and that this effect seems to result from enhancement of viral growth by indirect acceleration of plasmin generation induced by the protease.  相似文献   

15.
T B Shea  M L Beermann 《FEBS letters》1992,307(2):190-194
The relative contribution of two neuronal surface proteases, plasmin and a protease with thrombin-like specificity, on NB2a/dl neuroblastoma migration and neuritogenesis were examined. Exogenous plasmin induced cell body rounding and increased cell migration, but did not prevent or reverse neurite outgrowth. Inhibition of endogenous plasmin by its specific inhibitor, aprotinin, suppressed migration but did not induce neuritogenesis. Removal or inhibition of the thrombin-like protease by serum deprivation or hirudin addition, respectively, induced neurite outgrowth, as shown in our previous studies, but did not suppress migration. By contrast, trypsin induced simultaneous cell rounding and neurite retraction. These findings indicated that plasmin may regulate cell migration, while the thrombin-like protease may regulate facets of neurite outgrowth. Although unable to induce de novo neuritogenesis, plasmin inhibition potentiated the otherwise transient neurites induced by simultaneous inhibition of the thrombin-like protease. Since cultured neuronal cells migrate primarily in the direction of newly elaborated neurites, this finding is interpreted to indicate that cessation of neuronal migration by plasmin inhibition enhances net neurite outgrowth by inhibition of the putative thrombin-like protease.  相似文献   

16.
To identify new structure-function correlations in the γ domain of streptokinase, mutants were generated by error-prone random mutagenesis of the γ domain and its adjoining region in the β domain followed by functional screening specifically for substrate plasminogen activation. Single-site mutants derived from various multipoint mutation clusters identified the importance of discrete residues in the γ domain that are important for substrate processing. Among the various residues, aspartate at position 328 was identified as critical for substrate human plasminogen activation through extensive mutagenesis of its side chain, namely D328R, D328H, D328N, and D328A. Other mutants found to be important in substrate plasminogen activation were, namely, R319H, N339S, K334A, K334E, and L335Q. When examined for their 1:1 interaction with human plasmin, these mutants were found to retain the native-like high affinity for plasmin and also to generate amidolytic activity with partner plasminogen in a manner similar to wild type streptokinase. Moreover, cofactor activities of the mutants precomplexed with plasmin against microplasminogen as the substrate as well as in silico modeling studies suggested that the region 315-340 of the γ domain interacts with the serine protease domain of the macromolecular substrate. Overall, our results identify the presence of a substrate specific exosite in the γ domain of streptokinase.  相似文献   

17.
Swedberg JE  Harris JM 《Biochemistry》2011,50(39):8454-8462
Perioperative bleeding is a cause of major blood loss and is associated with increased rates of postoperative morbidity and mortality. To combat this, antifibrinolytic inhibitors of the serine protease plasmin are commonly used to reduce bleeding during surgery. The most effective and previously widely used of these is the broad range serine protease inhibitor aprotinin. However, adverse clinical outcomes have led to use of alternative serine lysine analogues to inhibit plasmin. These compounds suffer from low selectivity and binding affinity. Consequently, a concerted effort to discover potent and selective plasmin inhibitors has developed. This study used a noncombinatorial peptide library to define plasmin's extended substrate specificity and guide the design of potent transition state analogue inhibitors. The various substrate binding sites of plasmin were found to exhibit a higher degree of cooperativity than had previously been appreciated. Peptide sequences capitalizing on these features produced high-affinity inhibitors of plasmin. The most potent of these, Lys-Met(sulfone)-Tyr-Arg-H [KM(O(2))YR-H], inhibited plasmin with a K(i) of 3.1 nM while maintaining 25-fold selectivity over plasma kallikrein. Furthermore, 125 nM (0.16 μg/mL) KM(O(2))YR-H attenuated fibrinolysis in vitro with an efficacy similar to that of 15 nM (0.20 μg/mL) aprotinin. To date, this is the most potent peptide inhibitor of plasmin that exhibits selectivity against plasma kallikrein, making this compound an attractive candidate for further therapeutic development.  相似文献   

18.
Apoptosis-inducing materials were produced by digesting bovine skimmed milk with cell-free extract of Saccharomyces cereviiae at pH 4.8. An enzyme involved in production of the materials was purified from the cell-free extract by successive column chromatography. The purified enzyme was homogeneous and identified as protease B by analyzing N-terminal amino acid sequence. Characteristics features of apoptosis were observed within 5 h of digested skimmed milk treatment as documented by DNA fragmentation, expression of phosphatidylserine. The inducing factors were recovered in the soluble fraction of 92% ethanol, suggesting that the factors were hydrophilic low molecular weight substances.  相似文献   

19.
Osteopontin (OPN) is a highly modified integrin-binding protein present in most tissues and body fluids where it has been implicated in numerous biological processes. A significant regulation of OPN function is mediated through phosphorylation and proteolytic processing. Proteolytic cleavage by thrombin and matrix metalloproteinases close to the integrin-binding Arg-Gly-Asp sequence modulates the function of OPN and its integrin binding properties. In this study, seven N-terminal OPN fragments originating from proteolytic cleavage have been characterized from human milk. Identification of the cleavage sites revealed that all fragments contained the Arg–Gly–Asp145 sequence and were generated by cleavage of the Leu151–Arg152, Arg152–Ser153, Ser153–Lys154, Lys154–Ser155, Ser155–Lys156, Lys156–Lys157, or Phe158–Arg159 peptide bonds. Six cleavages cannot be ascribed to thrombin or matrix metalloproteinase activity, whereas the cleavage at Arg152–Ser153 matches thrombin specificity for OPN. The principal protease in milk, plasmin, hydrolyzed the same peptide bond as thrombin, but its main cleavage site was identified to be Lys154–Ser155. Another endogenous milk protease, cathepsin D, cleaved the Leu151–Arg152 bond. OPN fragments corresponding to plasmin activity were also identified in urine showing that plasmin cleavage of OPN is not restricted to milk. Plasmin, but not cathepsin D, cleavage of OPN increased cell adhesion mediated by the αVβ3- or α5β1-integrins. Similar cellular adhesion was mediated by plasmin and thrombin-cleaved OPN showing that plasmin can be a potent regulator of OPN activity. These data show that OPN is highly susceptible to cleavage near its integrin-binding motifs, and the protein is a novel substrate for plasmin and cathepsin D.  相似文献   

20.
Two acid stable proteinase inhibitors are present in bull seminal plasma and washed ejaculated bull spermatozoa. Inhibitor I with a molecular weight of about 8700 (estimated by gel filtration) is a very strong inhibitor of bull sperm acrosin but also inhibits bovine trypsin and chymotrypsin and porcine plasmin; inhibition of porcine pancreatic and urinary kallikrein was not observed. In this respect inhibitor I resembles the well known cow colostrum trypsin inhibitor. Inhibitor II with a molecular weight near 6800 (estimated by gel filtration) inhibits bovine trypsin and chymotrypsin, porcine plasmin and pancreatic and urinary kallikrein as well as bull acrosin. The inhibition specificity of inhibitor II is thus very similar to that of the basic inhibitor from bovine organs (Kunitz-type). In view of the inhibition strength and other characteristics, however, the acid stable bull seminal inhibitors are not identical with the inhibitor from cow colostrum or bovine lung (organs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号