首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the course of investigations on the metabolism of d-biotin by microorganisms, the authors have found that a strain belonging to Endomycopsis effectively converted d-biotin into unknown biotin vitamers. The unknown biotin vitamers formed were isolated in crystalline form from the culture filtrate of a strain of Endomycopsis species and characterized as bisnorbiotin and bisnorbiotin sulfoxide by their physico-chemical and biological properties. The isolated vitamers were shown to support the growth of Bacillus subtilis, but not of Saccharomyces cerevisiae and of Lactobacillus arabinosus. The degradative pathway of d-biotin in microorganisms was also discussed.  相似文献   

2.
The accumulation of biotin-vitamers in the culture media of a large number of microorganisms (about 700 strains) was studied. The contents of the biotin-vitamers were quantitatively determined by microbiological assays with Lactobacillus arabinosus and Saccharomyces cerevisiae.

It was found that large amounts of biotin-vitamers were accumulated by various microorganisms such as Streptomyces, molds and bacteria, and that the yield of biotin-vitamers was enhanced by the addition of pimelic acid or azelaic acid to the media. It was also found that the main portion of the vitamers accumulated by many microorganisms did not support the growth of Lactobacillus arabinosus, while it did support that of Saccharomyces cerevisiae. The small amounts of true biotin were observed in the culture media of various Streptomyces and molds, but hardly in the culture media of bacteria.

The identification of biotin-vitamers accumulated by various microorganisms is described, and the distribution of the vitamers in microorganisms is also described.

The results presented in this paper show that the main component of the vitamers accumulated by many microorganisms is identified as desthiobiotin by anion exchange column chromatography, paper chromatography and chemical analysis. Small amounts of fraction B (unidentified vitamers) and Fraction D (biotin) were also detected in the culture media of various molds and Streptomyces. However, these fractions were not observed in the culture media of any bacteria tested.

It was also found that large amounts of an unknown biotin-vitamer was accumulated by various bacteria. The vitamer was avidin-uncombinable, and, from the paper electrophoretic studies, it was assumed that the vitamer might be an analogue of pelargonic acid.  相似文献   

3.
1. An unknown biotin vitamer was obtained in high yields in culture filtrates of Penicillium chrysogenum. 2. Production of this vitamer and desthiobiotin is controlled by the biotin concentration in the medium. 3. The unknown vitamer becomes labelled when the organism is grown in the presence of radioactive pimelic acid. 4. Chromatographic procedures were developed for the purification of the radioactive vitamer. 5. The vitamer is extremely stable in concentrated acid but gives rise to new vitamers under certain conditions. 6. The intermediate role of this vitamer in the synthesis of biotin is discussed.  相似文献   

4.
Use of a yeast-lactobacillus differential microbiological assay permitted investigation into the synthesis of biotin vitamers by a variety of bacteria. A major portion of the biotin activity was found extracellularly. The level of total biotin (assayable with yeast) greatly exceeded the level of true biotin (assayed with lactobacillus). Values for intracellular biotin generally showed good agreement between the assays, suggesting the presence of only true biotin within the cells. Bioautographic analysis of the medium after growth of each organism revealed the presence of large amounts of a vitamer which corresponded to dl-desthiobiotin on the basis of Rf value and biological activity. Biotin, when detected at all, was at very low concentrations. Also, an avidin-uncombinable vitamer was synthesized by a majority of the bacteria. Addition of d-biotin to the growth medium prevented completely the synthesis of both vitamers of biotin. d-Biotin-d-sulfoxide had no effect on the synthesis of desthiobiotin or the avidin-uncombinable vitamer. Addition of dl-desthiobiotin did not prevent its own synthesis nor that of the other vitamer. Control of vitamer synthesis is therefore highly specific for d-biotin. The avidin-uncombinable vitamer was produced only at repressed levels in the presence of high concentrations of both d-biotin and dl-desthiobiotin, which suggested that it is not a degradation product of these substances. A possible mechanism for the overproduction of the biosynthetic precursors of biotin is presented.  相似文献   

5.
Birnbaum, Jerome (University of Cincinnati, Cinncinati, Ohio), and Herman C. Lichstein. Metabolism of biotin and analogues of biotin by microorganisms. II. Further studies on the conversion of d-biotin to biotin vitamers by Lactobacillus plantarum. J. Bacteriol. 92:913-919. 1966.-Lactobacillus plantarum growing in excess biotin converts a portion to two vitamers (combinable and uncombinable with avidin) not utilizable for growth. These were detected by differential yeast-lactobacillus assay. In the present study, suspensions of 12- and 72-hr cells showed no converting activity. Vitamer formation by nonproliferating 24-hr cells required glucose and exhibited a lag; 17-hr cells showed neither a lag nor a glucose requirement. Iodoacetate and chloramphenicol inhibited vitamer formation by 24-hr cells, but had no effect on 17-hr cells. Addition of hydrolyzed casein or preincubation in biotin decreased the lag and enhanced vitamer formation in 24-hr cells, but had no effect in 17-hr cells. Apparently, 17-hr cells contain the converting enzymes which degenerate as growth proceeds; the lag exhibited by 24-hr cells represents the time necessary to reform the enzymes. Equal amounts of the two vitamers were formed in 17-hr cells; only the avidin-combinable form was produced initially by 24-hr cells, unless hydrolyzed casein was present. Electrophoresis revealed that the avidin-combinable vitamer has the same charge as biotin,whereas the uncombinable form possesses both positive and negative groups. Column chromatography was used to separate the avidin uncombinable material from biotin and the avidin-combinable form. L. plantarum was unable to accumulate the avidin-uncombinable vitamer under conditions permitting good biotin accumulation. It was concluded that L. plantarum sequentially converts biotin to avidin-combinable and -uncombinable vitamers, the latter being impermeable to the cells.  相似文献   

6.
The utilization of hydrocarbons by microorganisms was studied in many fields, but the production of biotin vitamers by hydrocarbon-utilizing bacteria has never been reported.

We have screened many hydrocarbon-utilizing bacteria which produce biotin vitamers in the culture broth. The effects of cultural conditions on biotin vitamers production by strain 5–2, tentatively assigned to the genus Pseudomonas, were studied.

More than 98% of biotin vitamers produced from hydrocarbons by strain 5–2 was chromatographically determined as desthiobiotin. As nitrogen source, natural nutrients were more effective than inorganic nitrogen sources. The production of biotin vitamers was increased under the condition of good aeration. Exogenous pimelic or azelaic acid enhanced biotin vitamers production by strain 5–2.

The production of biotin vitamers from n-alkanes, n-alkenes or glucose by an isolated bacterium, strain 5-2, tentatively assigned to the genus Pseudomonas, was investigated. Among these carbon sources, n-undecane was the most excellent for biotin vitamers production.

The biosynthetic pathway of biotin vitamers, especially desthiobiotin, from n-undecane was also studied. It was found by thin-layer and gas-liquid chromatographical methods that pimelic and azelaic acids were the main acid components in n-undecane culture.

This result, together with previously reported enhancement of biotin vitamers production by these acids, suggests that pimelic and azelaic acids may be the intermediates of biotin vitamers biosynthesis from n-undecane.  相似文献   

7.
The hydrocarbon utilizing yeast Yarrowia lipolyyica NCYC 1421 produces biotin and its vitamers when grown on glucose in biotin-free media. Levels of production can be influenced by the medium composition. Growth in the presence of longchained fatty acids greatly increases biotin vitamer production. The biotin vitamers produced are normally dethiobiotin and 7-keto, 8-aminopelargonic acid. The addition of succinic acid at 0.5 g per litre causes the vitamer 7, 8-diaminopelargonic acid to be produced at high levels. The biotin antagonist α-dehydrobiotin inhibits the growth of Yarrowia lipolytica . Mutants can be readily isolated which show resistance to α-dehydrobiotin, but these do not produce greater amounts of biotin or its vitamers.  相似文献   

8.
1. Yeast cells grown in the presence of an unknown radioactive biotin vitamer produced by Penicillium chrysogenum incorporated the vitamer into the newly synthesized biotin. 2. The biotin was isolated as the avidin–biotin complex and after hydrolysis the biological activity and radioactivity were shown to be coincidental. 3. The specific activity of the biotin was identical with that of the pimelic acid used in a previous investigation to label the unknown vitamer. 4. The role of the unknown biotin vitamer as an intermediate in biotin biosynthesis is discussed.  相似文献   

9.
A quantitative screening procedure for biotin and biotin vitamer production was conducted on 129 yeast strains able to grow in a biotin-free medium. Production of biotin and biotin vitamers varied considerably from strain to strain even within a species. The best producers of biotin were strains of Sporobolomyces roseus and Rhodotorula rubra whilst strains of Rhodotorula rubra and Yarrowia lipolytica produced the largest amounts of vitamers.  相似文献   

10.
Fractionation of sorbitol metabolites in the culture liquid of Gluconobacter melanogenus IFO 3292 was examined by column chromatographic techniques. Ion exchange column chromatography of the culture supernatant allowed to divide the components of the metabolites into Fractions I, II, III and IV. Paperelectrophoretic and paperchromatographic analyses of these fractions revealed that Fractions I, II, III and IV contained neutral sugar, hexonic acids, 5-ketohexonic acid and 2-ketohexonic acids, respectively.

The neutral sugar in Fraction I, the 5-ketohexonic acid in Fraction III and the 2-ketohexonic acids in Fraction IV were isolated and determined to be l-sorbose, 5-keto-d- mannonic, 2-keto-d-gluconic and 2-keto-l-gulonic acids, respectively, from their physical properties. In Fraction II were contained two different hexonic acids, one of which was identified to be l-idonic acid by the aid of substrate specificity of a hexonic acid dehydrogenase of Pseudomonas aeruginosa, and the other was determined to be d-mannonic acid as the phenylhydrazide derivative.  相似文献   

11.
Biotin-vitamers were synthesized from glutaric acid by resting cells of certain strains of Agrobacterium. Pimelic acid, which has been known as a biotin precursor in many microorganisms, was not effective at all to this species. Optimum conditions for the biosynthesis of the vitamers by resting cells of Agrobacterium radiobacter IAM 1526 were investigated. L-Lysine was also effective, but the rate of the biosynthesis of biotin-vitamers from L-lysine was one-half that from glutaric acid. The vitamer synthesized was bioautographically identified as desthiobiotin. It was confirmed that 14C-labelled glutaric acid was incorporated into the desthiobiotin molecule.  相似文献   

12.
During the course of the study on biotin vitamers production by a hydrocarbon-utilizing bacterium, strain 5–2 (Pseudomonas sp.), it was found that crude RNA-alkali-hydrolyzate from yeast increased the accumulaion of biotin vitamers, most of which was determined as desthiobion, and that adenine in the crude RNA-alkali-hydrolyzate was a potent stimulator. Effect of adenine on biotin vitamers accumulation was observed in the medium with either hydrocarbon or glucose as a sole carbon source. The accumulation of total biotin vitamers by some other bacteria was also increased by adenine but that of true biotin was scarcely increased or inhibited by adenine.

The role of adenine on the accumulation of biotin vitamers was investigated with non-proliferating cells of strain 5–2, and it was supposed that adenine would not only inhibit the accumulation of true biotin but, as a result, cause the large accumulation of biotin vitamers which might be intermediates of biotin synthesis. When the medium was supplemented with excess biotin, complete repression occurred even in the presence of adenine.  相似文献   

13.
During the course of the study on the production of biotin from desthiobiotin by microorganisms, the present authors have found that some strains of molds produced an unknown biotin-vitamer (BS-factor) from desthiobiotin. The present investigation was undertaken to clarify the characteristics of the unknown vitamer. The unknown vitamer produced from desthiobiotin was isolated in crystalline form from culture filtrate of Aspergillus oryzae. The compound isolated was identified as 4-methyl-5-(ω-carboxybutyl)-imidazolidone-2 by the physico-chemical procedures.

The biosynthesis of biotin-vitamers by resting cell system of Bacillus sphaericus was studied.

It was found that pimelic acid was essential substrate in biosynthesis of biotin-vitamers and that some amino acids and organic acids stimulated the biosynthesis of biotin-vitamers from pimelic acid. Alanine was found to be most effective. It was assumed that, in the presence of pimelic acid, some amino acids, especially alanine, and some organic acids play an important role in the biosynthesis of biotin-vitamers.

The main component of the biotin-vitamers synthesized by the resting cell system was identified as desthiobiotin. The existence of a small amount of unknown biotin-vitamer, an avidin-uncombinable substance, which was assumed to be 7-keto-8-amino-pelargonic acid, was also observed. True biotin was hardly observed in any conditions tested.  相似文献   

14.
Biotin derivatives with biotin activity for some biotin-requiring microorganisms have been isolated in crystalline form from the culture filtrate of strain 194, identified as Rhodotorula flava. The crystalline vitamer was identified as d-biotinamide.  相似文献   

15.
Filter-paper disks of uniform size were chemically modified by the introduction of isonitrile functional groups. Avidin was then covalently linked to the disks in a four-component condensation reaction involving disk isonitrile groups and avidin carboxyl groups in the presence of a water-soluble aldehyde and an amine. Quantitative assay of unknown d-biotin solutions could be conveniently carried out with such avidin-cellulose disks by a two-step procedure: (i) immersion in the unknown sample, and (ii) exposure to an excess of radioactive biotin. Based on the known total capacity of the disks for biotin, the amount of unlabeled biotin extracted from solution by avidin-cellulose disks could be easily estimated.  相似文献   

16.
Summary Apurinic DNA endonuclease activity from Drosophila melanogaster embryos was resolved into two separable forms by phosphocellulose chromatography, one which flowed through the column (Fraction I) and the other which was retained and eluted at approximately 200 mM potassium phosphate (Fraction II). Both fractions, purified further by glycerol gradient sedimentation, were found to introduce nicks into DNA that were specific for and equal in number to the alkali-labile sites in depurinated DNA. They had similar apparent Km values for apurinic sites (0.7 nM apurinic sites for Fraction I and 0.8 nM for Fraction II), but differed with respect to optimal pH, Mg++ requirement and sensitivity to EDTA.  相似文献   

17.
The effect of the overexpression of the bioABFCD operon on the biotin biosynthetic pathway was investigated in an Escherichia coli K12 bioR mutant with a chromosomal deletion for the biotin operon. When transformed with a multicopy number plasmid containing bioABFCD, this strain synthetized 10,000 times more biotin than a wild-type E. coli strain. In order to further increase biotin production, the bioA and bioB operons were subcloned into plasmids with stronger promoters and in some cases optimal ribosome binding sites. The new constructions led to the accumulation of large amounts of soluble Bio proteins (although not BioC) but did not improve biotin production. In all the constructed strains, BioA, BioD, and BioB activities were greatly amplified but these activitie did not correlate with the level of protein syntthesis. These strains accumulated only low levels of vitamers, auggesting that the major limiting step for higher biotin production occurs upstream from the first intermediate of the Bio pathway we assayed (7,keto-8-aminopelargonic acid). As BioC overproduction was shown to impair cell growth, we could not determine if this early step of pathway was limiting. Correspondence to: S. Lévy-Schil  相似文献   

18.
Biotin auxotrophs were isolated from Escherichia coli K-12. One of the mutants was unable to grow on desthiobiotin and accumulated a large amount of a vitamer in medium when growing on an optimal concentration of biotin. The production of the vitamer was inhibited in the presence of an excess amount of biotin. The vitamer was identified as desthiobiotin on the basis of biological activities, avidin combinability, and chromatographic characteristics. The mutant lacked the ability to convert desthiobiotin to biotin. These results further support the hypothesis that desthiobiotin is a normal intermediate in the biosynthesis of biotin in E. coli.  相似文献   

19.
The biotin activity of beet and lactose molasses against the test strain Saccharomyces cerevisiae 225 by auxanographic method was evaluated. The level of lactose molasses biotin activity is almost twice as high as that obtained in the case of beet molasses. The results of bioautography with test strains Saccharomyces cerevisiae 225 and Lactobacillus arabinosus 17-5 indicate the qualitative composition of biotin derivatives (vitamers) in both molasses. Depending on the various technological steps e.g. sterilization or clarification one may find differences in the content and qualitative composition of biotin vitamers.  相似文献   

20.
The enzymatic synthesis of 7-oxo-8-aminopelargonic acid (7-KAP) from pimelyl-coenzyme A and l-alanine was demonstrated in cell-free extracts of a biotin mutant of Escherichia coli K-12 which excretes only 7-KAP into the growth medium. This biotin vitamer was identified by its chromatographic and electrophoretic properties. The enzyme (7-KAP synthetase) was repressed when the organism was grown in biotin concentrations greater than 0.2 ng/ml. The parent strain and members of other mutant groups that excrete 7-KAP, in addition to other vitamers, also exhibited synthetase activity. A mutant group that failed to excrete 7-KAP was further sub-divided into three groups, one of which lacked synthetase activity. These results are discussed in relation to a previously proposed scheme for biotin biosynthesis in which the formation of 7-KAP is considered the point of entry for pimelic acid into the biotin pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号