首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of supplementation with creatine (Cr) and its analog, β-guanidinopropionic acid (β-GPA), on the differentiation of myoblasts and the numbers of nucleoli were studied in C2C12 cells. The cells were cultured in differentiation medium for 4 d. Then Cr (1 mM) or β-GPA (1 mM) was added to the cells, and the mixture was cultured for an additional 2 d. Although the number of myotubes was not different among the groups, myotube diameters and nuclear numbers in myotubes were increased by Cr and β-GPA treatment respectively. The expression of differentiation marker proteins, myogenin, and the myosine heavy chain, was increased in the β-GPA group. Supplementation with β-GPA also increased the percentage of p21 (inhibitor for cell cycle progression)-positive myoblasts. Supplementation with Cr inhibited the decrease in nucleoli numbers, whereas β-GPA increased nucleolar sizes in the myotubes. These results suggest that β-GPA supplementation stimulated the differentiation of myoblasts into multi-nucleated myotubes through induction of p21 expression.  相似文献   

2.
The theanine (THE: γ-glutamylethylamide) content and the growth rate of cultured cells of tea (Camellia sinensis L.) were increased greatly to 22.3%, in dry wt. with a medium containing 60 mM nitrate and 25 mM ethylamine as a nitrogen source. The optimum concentrations of nitrate, Mg2+, and K+ for the growth and formation of THE in suspension cells were 40mM, 3mM, and 104mM, respectively. The yield of THE accumulated in the cultured cells with the medium modified for THE formation was increased greatly due to a great increase of the growth rate.  相似文献   

3.
The effects of cytokinins, a class of plant hormones, on cell proliferation and protein synthesis were studied in rat-derived L6 myoblasts cultured in a serum-free medium. Of the three cytokinins tested, isopentenyladenine, zeatin and ribosylzeatin, isopentenyladenine (5 μm) most stimulated the growth and DNA synthesis of the myoblasts, and it dose-dependently (0 ~ 10μm) enhanced the proliferation and DNA synthesis of the cells. Isopentenyladenine (5 and 10 μm) increased protein synthesis to twice that of control (0μm). These results suggest that isopentenyladenine, a trace component in plant food and a plant hormone, can affect the metabolism of an animal cell line of myoblasts.  相似文献   

4.
The substrate specificity of sugar beet α-giucosidase was investigated. The enzyme showed a relatively wide specificity upon various substrates, having α-1,2-, α-1,3-, α-1,4- and α-l,6-glucosidic linkages.

The relative hydrolysis velocity for maltose (G2), nigerose (N), kojibiose (K), isomaltose (I), panose (P), phenyl-a-maltoside (?M) and soluble starch (SS) was estimated to be 100:130: 10.7: 22.6: 54.6: 55.8: 120 in this order; that for malto-triose (G3), -tetraose (G4), -pentaose (G5), -hexaose (G6), -heptaose (G7), -octaose (G8), amyloses (G13) and (G17), 91: 91: 91: 91: 80: 57: 75: 73. The Km values for N, K, I, P, and SS were 16.7 mM, 1.25 mM, 10.8 mM, 8.00 mM, 4.12 mM and 1.90 mg/ml, respectively; that for G2, G3, G4, G5, G6, G7, G8, G13 and G17 were 20.0 mM, 3.67 mM, 2.34 mM, 0,64 mM, 0.42 mM, 0.32 mM, 0.23 mM, 0.36 mM and 0.26 mM, respectively.

The enzyme, though showed higher affinity and activity toward soluble starch than toward maltose, was considered essentially to be an α-glucosidase.  相似文献   

5.
Isolated hepatocytes are known to maintain their physiological functions for over a week when cultured on Matrigel, artificially reconstituted from basement membrane components. Although this culture technique has been frequently used in research on hepatocyte functions, there has been a limitation on its application for small scale experiments due to some technical problems. By using micro-culture plates with 96 round-bottom wells, we succeeded in coating the wells uniformly with Matrigel. When the cultured hepatocytes were treated with either 10 mM, 15 mM, or 20 mM of acetaminophen or 1 mM, 10 mM, or 20 mM of D-galactosamine, the viability of the hepatocytes became 91.1%, 75.3%, 64.7%, and 79.0%, 43.8%, 26.2% of the non-treated control at 48 hours, respectively. Fractionated extracts of Glycyrrhiza glabra L. and Schisandra chinensis Baillon inhibited the action of acetaminophen or D-galactosamine in this model. From these results, we concluded that the microculture system presented here is capable of maintaining the in vivo characteristics of hepatocytes and is suitable for the screening of hepatoprotective substances.  相似文献   

6.
2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker’s yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker’s yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.  相似文献   

7.
L-Tartrate in wines and grapes was enzymatically quantified by using the secondary activity of D-malate dehydrogenase (D-MDH). NADH formed by the D-MDH reaction was monitored spectrophotometrically. Under the optimal conditions, L-tartrate (a 1.0 mM sample solution) was fully oxidized by D-MDH in 30 min. A linear relationship was obtained between the absorbance difference and the L-tartrate concentration in the range of a 0.02-1.0 mM sample solution with a correlation coefficient of 0.9991. The relative standard deviation from ten measurements was 1.71% at the 1.0 mM sample solution level. The proposed method was compared with HPLC, and the values determined by both methods were in good agreement.  相似文献   

8.
Bovine serum albumin was reduced by incubating with various concentrations (0–200 mM) of 2-mercaptoethanol, and its emulsifying properties were examined for an oil-in-water emulsion system. A particle size analysis revealed that albumin reduced at 30 mM of the thiol yielded smaller oil particles than either native protein, or the protein reduced at 70 or 200 mM of the thiol. Furthermore, the particle size was almost constant during 35 days of storage with albumin reduced at 30 mM of the thiol, while an emulsion prepared using the native protein, or the protein reduced at 70 or 200 mM of the thiol was unstable during the same storage period. Gel filtration chromatography and transmission electron micrography show that serum albumin made aggregates with high molecular size by its disulfide reduction with 70 or 200 mM, but not with 30 mM of 2-mercaptoethanol. It was, therefore, concluded that the emulsifying property of serum albumin can be improved by a mild disufide reduction.  相似文献   

9.
Single cells were prepared from mesocarp tissue of ripe persimmon (Diospyros kaki cv. Fuyu) fruits, and inter- or intracellular localization of acid invertase (AI, EC 3.2.1.26) was studied. AI was localized in the intercellular fraction (cell wall fraction). AI was isolated and purified from the cell wall fraction of ripe persimmon fruits by column chromatography on SE-53 cellulose and Toyopearl HW 55F. The specific activity of purified AI was 570 units per mg protein at 30°C. The molecular mass of AI was estimated to be 44 kDa by gel filtration over Sephacryl S-200 and 70 kDa by SDS–PAGE. The optimum pH of the activity for sucrose was 4.25. The purified enzyme hydrolyzed sucrose and raffinose but not melibiose. The enzyme had a Km of 3.2 mM for sucrose and a Km of 2.6 mM for raffinose. Silver nitrate (5 μM), HgCI2 (2 μM), p-chloromercuribenzoate (100mM), pyridoxamine (10mM), and pyridoxine (2.5mM) inhibited AI activity by 95, 85, 100, 41, and 300%, respectively.  相似文献   

10.
D-Galactosyl-β1→4-L-rhamnose (GalRha) was produced enzymatically from 1.1 M sucrose and 1.0 M L-rhamnose by the concomitant actions of four enzymes (sucrose phosphorylase, UDP-glucose-hexose 1-phosphate uridylyltransferase, UDP-glucose 4-epimerase, and D-galactosyl-β1→4-L-rhamnose phosphorylase) in the presence of 1.0 mM UDP-glucose and 30 mM inorganic phosphate. The accumulation of GalRha in 1 liter of the reaction mixture reached 230 g (the reaction yield was 71% from L-rhamnose). Sucrose and fructose in the reaction mixture were removed by yeast treatment, but isolation of GalRha by crystallization after yeast treatment was unsuccessful. Finally, 49 g of GalRha was isolated from part of the reaction mixture with yeast treatment by gel-filtration chromatography.  相似文献   

11.
Xylanase induction by β-xyloside was investigated in non-growing conditions using non-induced mycelia of Streptomyces sp. No. 3137 harvested from glucose medium. The mycelia started to produce xylanase without lag time when β-xyloside was added. The rate of xylanase synthesis was dependent on the concentration of β-xyloside added to the inducing culture medium. The induction constants of various β-xylosides were calculated from the Lineweaver-Burk plots; those of methyl-, isopropyl-, butyl- and ethylencyanohydrin-β-d-xylosides were 10.53 mm, 3.83 mm, 0.55mm and 0.25 mm, respectively. Some α-xylosides repressed xylanase synthesis. The rate of xylanase synthesis decreased suddenly after the addition of α-xyloside. The inhibition constants of methyl-, ethyl- and isopropyl-α-d-xylosides were 8.80 mm, 12.50 mm and 33.33 mm, respectively. The xylanase induction was also repressed by glucose. However, this repression was completely restored after consuming additional glucose.  相似文献   

12.
L-Arabinose isomerase (L-arabinose ketol-isomerase, EC 5.3.1.4) was demonstrated from the L-arabinose-grown cells of Streptomyces sp. which was isolated from sea water. The enzyme was purified by MnCl2 treatment, fractionation by polyethylene glycol and by column chromatographies on Sephadex G-150 and DEAE-cellulose. The purified enzyme was specific only for L-arabinose and the Michaelis constant for L-arabinose was 40 mM at pH 7.5. Manganese or cobalt ions were effective for the enzyme activity after dialysis against EDTA. The enzyme activity was inhibited competitively by L-arabitoI, ribitol and xylitol, of which inhibition constants were 1.1, 1.0, and 15 mM, respectively.  相似文献   

13.
The effects of cysteine as an antioxidant nutrient on change in protein modification and myofibrillar proteolysis in chick myotubes by induction of oxidative stress by H2O2 treatment were investigated. Myotubes were treated for 1 h with H2O2 (1 mM). After this treatment, the H2O2 was removed and the cells were cultured in cysteine (0.1 and 1 mM) containing serum-free medium for 24 h. Protein carbonyl content as an index of protein modification and Nτ-methylhistidine release as an index of myofibrillar proteolysis were increased at 24 h after H2O2 treatment, and the increment was reduced by cysteine. Calpain, proteasome and cathepsin (B+L and D) activities were increased at 24 h after H2O2 treatment, and the increment was also reduced by cysteine. These results indicate that cysteine suppresses protein modification by oxidative stress, resulting in a decrease of protease acitivities, finally resulting in a decrease in myofibrillar proteolysis in chick myotubes.  相似文献   

14.
A succinimide-assimilating bacterium, Pseudomonas putida s52, was found to be a potent producer of pyruvate from fumarate. Using washed cells from P. putida s52 as catalyst, 400 mM pyruvate was produced from 500 mM fumarate in a 36-h reaction. Bromopyruvate, a malic enzyme inhibitor, was used for the selection of mutants with higher pyruvate productivity. A bromopyruvate-resistant mutant, P. putida 15160, was found to be an effective catalyst for pyruvate production. Moreover, under batch bioreactor conditions, 767 mM of pyruvate was successfully produced from 1,000 mM fumarate in a 72-h reaction with washed cells from P. putida 15160 as catalyst.  相似文献   

15.
We have developed a new enzymatic assay for determining L-cysteine concentration. The method involves the use of βC-S lyase from Streptococcus anginosus, which catalyzes the α,β-elimination of L-cysteine to hydrogen sulfide, pyruvate, and ammonia. The production of pyruvate is measured by D-lactate dehydrogenase and NADH. The decrease in NADH was proportional to the L-cysteine concentration up to 1.0 mM. When serum samples were used, within-day and day-to-day coefficient variations were below 4%. This method is simple, and can easily and reliably be used for accurate determination of L-cysteine concentration in serum or other samples.  相似文献   

16.
Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) produced N-acyl-D-aspartate amidohydrolase (D-AAase) in the presence of N-acetyl-D-aspartate as an inducer. The enzyme was purified to homogeneity. The enzyme had a molecular mass of 56 kDa and was shown by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) to be a monomer. The isoelectric point was 4.8. The enzyme had maximal activity at pH 7.5 to 8.0 and 50°C, and was stable at pH 8.0 and up to 45°C. N-Formyl (Km=12.5 mM), N-acetyl (Km=2.52 mM), N-propionyl (Km=0.194 mM), N-butyryl (Km=0.033 mM), and N-glycyl (Km =1.11 mM) derivatives of D-aspartate were hydrolyzed, but N-carbobenzoyl-D-aspartate, N-acetyl-L-aspartate, and N-acetyl-D-glutamate were not substrates. The enzyme was inhibited by both divalent cations (Hg2+, Ni2+, Cu2+) and thiol reagents (N-ethylmaleimide, iodoacetic acid, dithiothreitol, and p-chloromercuribenzoic acid). The N-terminal amino acid sequence and amino acid composition were analyzed.  相似文献   

17.
A major laccase isozyme (Lac 1) was isolated from the culture fluid of an edible basidiomycetous mushroom, Grifola frondosa. Lac 1 was revealed to be a monomeric protein with a molecular mass of 71 kDa. The N-terminal amino acid sequence of Lac 1 was highly similar to those of laccases of some other white-rot basidiomycetes. Lac 1 showed the typical absorption spectrum of a copper-containing enzyme. The enzyme was stable in a wide pH range (4.0 to 10.0), and lost no activity up to 60 °C for 60 min. The optimal pH of the enzyme activity varied among substrates. The K m values of Lac 1 toward 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), 2,6-dimethoxyphenol, guaiacol, catechol, and 3,4-dihydroxy-L-phenylalanine were 0.0137 mM, 0.608 mM, 0.531 mM, 2.51 mM, and 0.149 mM respectively. Lac 1 activity was remarkably inhibited by the chloride ion, in a reversible manner. Lac 1 activity was also inhibited by thiol compounds.  相似文献   

18.
Effects of l-tryptophan and its metabolites were evaluated on synthesis of nerve growth factor (NGF) in cultured mouse astroglial cells. l-Tryptophan stimulated NGF production in a dose-dependent fashion. Serotonin and quinolinic acid slightly increased NGF synthesis. l-Kynurenine had a marked stimulatory effect on NGF synthesis at a dose of 100 μm. In contrast, kynurenic acid had no effect.  相似文献   

19.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38–39 kDa, as judged by SDS–PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5±4.5 μM and uronic acids, such as D-galacturonic acid (Km=3.79±0.5 mM) and D-glucuronic acid (Km=4.67±0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP+. The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H2O2, suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

20.
Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号