首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the carbohydrate moiety of GP–I–a, one of three glycopeptides obtained from Rhizopus saccharogenic amylase, was determined by using enzymatic and chemical techniques.

Six residues (all of the residues in GP–I–a) of mannose and one residue of N-acetylglucosamine were released in that order when GP–I–a was digested successively with purified α-mannosidase and β-N-acetylglucosaminidase.

Exhaustive methylation of GP–I–a gave 3,6-di-O-methyl derivative from the N-acetylglucosamine residues, and 2,3,4,6-tetra-O-methyl, 3,4,6-tri-O-methyI and 2,4-di-O-methyl derivatives from the mannose residues in an approximate ratio of 3: 1:2.

After one step of the Smith degradation of GP–I–a, a residual glycopeptide (F–1) consisted of one mole each of asparagine and glycine and two moles each of mannose and N-acetylglucosamine was obtained. Exhaustive methylation of F–1 gave 3,6-di-O-methyl derivative of N-acetylglucosamine, and 2,3,4,6-tetra-O-methyl and 2,3,4-tri-O-methyl derivatives of mannose in a ratio of 1.00: 0.91.

Partial acetolysis of 1→6 linkages in GP–I–a yielded mannose, 3-O-mannosylmannose and a smaller glycopeptide which was resistant to the acetolysis.

From these and other evidences, the following structure was determined for GP–I–a.  相似文献   

2.
Purified, bael-gum polysaccharide containsd-galactose (71%),l-arabinose (12.5%),l-rhamnose (6.5%), andd-galacturonic acid (7%). Hydrolysis of one mole of the fully methylated polysaccharide gave: (a) from the neutral part, 2,3,4-tri-O-methyl-l-rhamnose (2 moles), 2,3,5-tri-O-methyl-l-arabinose (4 moles), 2,3,4,6-tetra-O-methyl-d-galactose (8 moles), 3,4-di-O-methyl-l-rhamnose (2 moles), 2,5-di-O-methyl-l-arabinose (1 mole), 2,4,6-tri-O-methyl-d-galactose (10 moles), 2,3-di-O-methyl-l-arabinose (1 mole), 2,4-di-O-methyl-d-galactose (14 moles), and 2-O-methyl-d-galactose (2 moles); and (b) from the acidic part, 2,3,4-tri-O-methyl-d-galacturonic acid (1 mole), 2,4,6-tri-O-methyl-3-O-(2,3,4-tri-O-methyl-d-galactopyranosyluronic acid)-d-galactose (2.6 moles), and 2,4,6-tri-O-methyl-3-O-[2,4,6-tri-O-methyl-3-O-(2,3,4-tri-O-methyl-d-galactopyranosyluronic acid)-d-galactopyranosyl]-d-galactose (1 mole). Mild hydrolysis of the whole gum yielded oligosaccharides from which 3-O-β-d-galactopyranosyl-l-arabinose, 5-O-β-d-galactopyranosyl-l-arabinose, 3-O-β-d-galactopyranosyl-d-galactose, and 6-O-β-d-galactopyranosyl-d-galactose could be isolated and characterized. The results of methylation, periodate oxidation, Smith degradation, Barry degradation, and graded hydrolysis studies were employed for the elucidation of the structure of the whole gum.  相似文献   

3.
Condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-benzyl-1-O-(N-methyl)acetimidoyl-β-D-glucopyranose gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside which was catalytically hydrogenolysed to crystalline 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranose (N-acetylmaltosamine). In an alternative route, the aforementioned imidate was condensed with 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose, and the resulting disaccharide was catalytically hydrogenolysed, acetylated, and acetolysed to give 2-acetamido-1,3,6-tri-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-α-D-glucopyranose Deacetylation gave N-acetylmaltosamine. The synthesis of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose involved condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in the presence of mercuric bromide, followed by deacetylation and catalytic hydrogenolysis of the condensation product.  相似文献   

4.
Eight biflavones have been isolated from the leaf extracts of Araucaria excelsa. 7″-O-Methylamento-flavone, 7,7″-di-O-methylamentoflavone, 4′ or 4″', 7-di-O-methylcupressuflavone, 7,7″,4″'-tri-O-methyl agathisflavone and 7,4′,7″-tri-O-methylamentoflavone are new compounds and are being reported for the first time. The others are 7,7″-di-O-methylagathisflavone,7,4′,7″,4″'-tetra-O-methylamentoflavone and 7,4′,7″,4″'-tetra-O-methyl-cupressuflavone. Mass and NMR spectral studies are used for structural elucidation. In addition, the presence of several other biflavones has been indicated by TLC examination of methylated products.  相似文献   

5.
Rat plasma thiostatin is a 68 kDa glycoprotein with kinin donor and cysteine proteinase inhibitor properties. Thiostatin is an acute-phase plasma protein (APPP) with dramatically elevated plasma levels in response to inflammatory stimuli. APPPs have been shown to possess altered glycan structures in inflammation. This study compares the carbohydrate structure of normal thiostatin with that expressed during the acute-phase response. Thiostatin from both normal and acute-phase plasma was purified by carboxymethyl-papain Sepharose 4B affinity chromatography. Sugar composition analysis by gas chromatography and the Warren method yielded similar mean values for both proteins on a mole sugar per mole protein basis (normal/acute phase): fucose, 2.4/1.7; mannose, 7.5/8.0; galactose, 11.2/10.6; and sialic acid, 14.2/13.0. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot identified a homogeneous 68–70 kDa molecular species for normal and acute-phase thiostatin. Inter-sugar linkage analysis was carried out for permethylated oligosaccharides released by hydrazinolysis. Gas chromatography yielded the following partially methylated alditol acetates relative to 1.0 mole of 1,3,6-tri-O-linked mannose (mean normal/mean acute phase): galactose: 1,3-di-O-, 1.44/1.01; 1,6-di-O-, 1.02/0.68; mannose: 1,2-di-O-, 1.64/1.42; 1,2,4-tri-O-, 0.24/0.13; 1,3,6-tri-O-, 1.0/1.0; 2-deoxy-2-N-methylacetamidoglucose: 1,4-di-O-, 1.42/1.12. These analytical studies indicated that corresponding carbohydrate structures are present in normal and acute-phase thiostatin. Crossed affinoimmunoelectrophoresis (CAIE) further confirmed the structural similarity between the glycan moieties.  相似文献   

6.
1,2,4,6-Tetra-O-acetyl-3-O-benzyl-α-D-mannopyranose (7) was obtained in good yield from 3,4,6-tri-O-benzyl-1,2-O-(1-methoxyethylidene)-β-D-mannopyranose (1) by acetolysis. Hydrogenolysis of 7 afforded 1,2,4,6-tetra-O-acetyl-α-D-mannopyranose which is a versatile intermediate for the preparation of other 3-O-substituted D-mannoses, such as 3-O-methyl-D-mannose and 3-O-α-D-mannopyranosyl-D-mannose. 3,4-Di-O-methyl-D-mannose was readily prepared from 1,2,6-tri-O-acetyl-3,4-di-O-benzyl-α-D-mannopyranose, which was also obtained from 1 by controlled acetolysis.  相似文献   

7.
《Carbohydrate research》1987,162(2):199-207
The 2,1′-O-isopropylidene derivative (1) of 3-O-acetyl-4,6-O-isopropylidene-α-d-glucopyranosyl 6-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside and 2,3,4-tri-O-acetyl-6-O-trityl-α-d-glucopyranosyl 3,4-anhydro-1,6-di-O-trityl-β-d-lyxo-hexulofuranoside have been synthesised and 1 has been converted into 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside (2). The SN2 reactions of 2 with azide and chloride nucleophiles gave the corresponding 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-azido-4-deoxy-β-d-fructofuranoside (6) and 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-chloro-4-deoxy-β-d-fructofuranoside (8), respectively. The azide 6 was catalytically hydrogenated and the resulting amine was isolated as 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 4-acetamido-1,3,6-tri-O-acetyl-4-deoxy-β-d-fructofuranoside. Treatment of 5 with hydrogen bromide in glacial acetic acid followed by conventional acetylation gave 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-bromo-4-deoxy-β-d-fructofuranoside. Similar SN2 reactions with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-ribo-hexulofuranoside (12) resulted in a number of 4′-derivatives of α-d-glucopyranosyl β-d-sorbofuranoside. The regiospecific nucleophilic substitution at position 4′ in 2 and 12 has been explained on the basis of steric and polar factors.  相似文献   

8.
Treatment of 2,3,4,6-tetra-O-methyl-d-glucose with 10 molar equivalents ofn 30% aqueous hydrogen peroxide and 2 molar equivalents of potassium hydroxide afforded, after chromatographic separation, 2,3,4,6-tetra-O-methyl-d-gluconolactone. 1-O-formyl-2,3,5-tri-O-methyl-d-arabinose methyl hemiacetal (7), 2,3,5-tri-O-methyl-d-arabinonolactone, methyl 2,3,5-tri-O-methyl-d-arabinoside, O-(2,4-di-O-methyl-d-erythrose)-(1'→3)-2,4-di-O-methyl-d-erythronic acid, and O-(2,4-di-O-methyl-d-erythrose)-(1′→2)-3-O-methyl-d-glyceraldehyde. The proportions of the products depended on the reaction conditions, especially the time, temperature, and the presence or absence of magnesium hydroxide. Formation of the products is explained by a series of reactions beginning with the addition of hydrogen peroxide to the carbonyl form of the methylated sugar. The adduct, with the help of superoxide radical and a molecule of hydrogen peroxide, breaks up in two ways, giving 2,3,4,6-tetra-O-methyl-d-gluconic acid and 7. The formic ester, on hydrolysis, gives 2,3,5-tri-O-methyl-d-arabinose, which undergoes a similar series of reactions, affording 2,3,5-tri-O-methyl-d-arabinonic acid, and presumably, 1-O-formyl-2,4-di-O-methyl-d-erythrose methyl hemiacetal. Apparently, the latter compound, on hydrolysis, forms a dimer, which, with alkaline hydrogen peroxide, undergoes a similar series of reactions, ultimately affording O-(2,4-di-O-methyl-d-erythrose)-(1→3)-2,4-di-O-methyl-d-erythronic acid and O-(2,4-di-O-methyl-d-erythrose)-(1→2)-3-o-methyl-d-glyceraldehyde. With a larger amount of alkali, under more-severe conditions, oxidation of 2,3,4,6-tetra-O-methyl-d-glucose proceeds further, with production of up to 3 moles of formic acid per mole of methylated sugar.  相似文献   

9.
A highly branched xylan and a linear, β-d-(1→4)-linked glucomannan are the two hemicellulosic components isolated from the endosperms of groundnut (Arachis hypogea). Electrophoretic, sedimentation, and sugar analysis indicate the polysaccharides to be fairly homogeneous. The O-methyl derivatives of the polysaccharides were analysed, after reduction and O-acetylation, by gas-liquid chromatography and g.l.c.-mass spectrometry. 2,3,4-Tri-O-methyl-d-xylose (3.6 mol), 2,3-di-O-methyl-d-xylose (21.0 mol), 3-O-methyl-d-xylose (2.8 mol), and d-xylose (4.2 mol) were detected in the xylan, whereas 2,3,4,6-tetra-O-methyl-d-glucose and/or mannose (1.6 mol), 2,3,6-tri-O-methyl-d-mannose (5.6 mol), and 2,3,6-tri O-methyl-d-glucose (21.2 mol) were found in the glucomannan. Periodate and Smith-degradation studies substantiate the results of methylation analysis on the xylan. A glucose: mannose ratio of 3:1 for the glucomannan, however, suggests that this fraction may be an aggregate of true glucomannan and glucan or degraded cellulose.  相似文献   

10.
Ammonium hydroxide treatment of 1,6:2,3-dianhydro-4-O-benzyl-β-D-mannopyranose, followed by acetylation, gave 2-acetamido-3-O-acetyl-1,6-anhydro-4-O-benzyl-2-deoxy-β-D-glucopyranose which was catalytically reduced to give 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose (6), the starting material for the synthesis of (1→4)-linked disaccharides bearing a 2-acetamido-2-deoxy-D-glucopyranose reducing residue. Selective benzylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose gave a mixture of the 3,4-di-O-benzyl derivative and the two mono-O-benzyl derivatives, the 4-O-benzyl being preponderant. The latter derivative was acetylated, to give a compound identical with that just described. For the purpose of comparison, 2-acetamido-4-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose has been prepared by selective acetylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose.Condensation between 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and 6 gave, after acetolysis of the anhydro ring, the peracetylated derivative (17) of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose. A condensation of 6 with 3,4,6-tri-O-acetyl-2-deoxy-2-diphenoxyphosphorylamino-α-D-glucopyranosyl bromide likewise gave, after catalytic hydrogenation, acetylation, and acetolysis, the peracylated derivative (21) of di-N-acetylchitobiose.  相似文献   

11.
The syntheses are described of 2,3-di-O-glycosyl derivatives of methyl α- and β- -glucopyranoside having α- -manno-, β- -galacto-, α- -rhamno-, α- -fuco-, and β- -fuco-pyranosyl substitutents at O-2 and O-3. The syntheses involved glycoslation of methyl 4,6-O-(benzylidene-α- (24) and β- -glucopyranoside (21), and substituted derivatives of 21 bearing 2-O-(2,3,4,6-tetra-O-benzyl-α- -mannopyranosyl)-, -(2,3,4,6-tetra-O-acetyl-β- -galactopyranosyl)-, -(2,3,4-tri-O-benzyol-α- -rhamnopyranosyl)-, and-(2,3,4-tri-O-benzoyl-β- -fucopyranosyl) groups.  相似文献   

12.
The 6-O-mesyl, 6-O-tosyl, 6-bromo-6-deoxy, and 6-deoxy-6-iodo derivatives of 1,4-anhydro-DL-allitol were obtained by treatment of the corresponding 1,6-di-substituted derivatives (2, 3, 6, 4) of 2,3,4,5-tetra-O-acetylallitol with hot, methanolic hydrogen chloride. Compounds 2 and 3 were prepared by the acetolysis of the 1,6-di-O-mesyl and 1,6-di-O-tosyl derivatives (8 and 11) of di-O-benzylideneallitol. Iodide displacement on 2 gave 4, and detritylation-bromination of 2,3,4,5-tetra-O-acetyl-1,6-di-O-tritylallitol (5) gave 6. The acetal residues of di-O-benzylideneallitol have been shown to span the secondary carbon atoms.  相似文献   

13.
The alkali-soluble polysaccharides have been surveyed in the seeds of 7 species of the Liliaceae and 2 species of the Iridaceae. All appear to contain galactoglucomannans and/or glucomannans. The structure of the water-soluble galactoglucomannan from the endosperm of Asparagus officinalis has been studied in detail. It contains residues of glucose, mannose and galactose in the ratio 43:49:7. Hydrolysis of the fully methylated polysaccharide released 2,3,4,6-tetra-O-methyl-d-hexoses (mannose and glucose), 2,3,4,6-tetra-O-methyl-d-galactose, 2,3,6-tri-O-methyl-d-mannose, 2,3,6-tri-O-methyl-d-glucose, 2,3-di-O-methyl-d-mannose and 2,3-di-O-methyl-d-glucose in the molar proportions of 1:4.5:50:41:2:1·5. The following oligosaccharides were identified on partial hydrolysis of the galactoglucomannan: mannobiose, mannotriose, mannotetraose, cellobiose, glucopyranosylmannose, mannopyranosylglucose and a trisaccharide composed of two mannosyl residues and one glucosyl residue. The galactoglucomannan consists of a linear chain of β(1 → 4)-Iinked d-mannosyl and d-glucosyl residues, to which are attached single-unit galactosyl side chains. The galactose residues are linked 1 → 6, probably α. The terminal, non-reducing residues of the main chain may be either glucosyl or mannosyl units but the former predominate.  相似文献   

14.
O-α- -Rhamnopyranosyl-(1→3)- -rhamnopyranose (19) and O-α- -rhamnopyranosyl-(1→2)- -rhamnopyranose were obtained by reaction of benzyl 2,4- (7) and 3,4-di-O-benzyl-α- -rhamnopyranoside (8) with 2,3,4-tri-O-acetyl-α- -rhamnopyranosyl bromide, followed by deprotection. The per-O-acetyl α-bromide (18) of 19 yielded, by reaction with 8 and 7, the protected derivatives of the title trisaccharides (25 and 23, respectively), from which 25 and 23 were obtained by Zemplén deacetylation and catalytic hydrogenolysis, With benzyl 2,3,4-tri-O-benzyl-β- -galactopyranoside, compound 18 gave an ≈3:2 mixture of benzyl 2,3,4-tri-O-benzyl-6-O-[2,4-di-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-α- -rhamnopyranosyl]-β- -galactopyranoside and 4-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-β- -rhamnopyranose 1,2-(1,2,3,4-tetra-O-benzyl-β- -galactopyranose-6-yl (orthoacetate). The downfield shift at the α-carbon atom induced by α- -rhamnopyranosylation at HO-2 or -3 of a free α- -rhamnopyranose is 7.4-8.2 p.p.m., ≈1 p.p.m. higher than when the (reducing-end) rhamnose residue is benzyl-protected (6.6-6.9 p.p.m.). α- -Rhamnopyranosylation of HO-6 of gb- -galactopyranose deshields the C-6 atom by 5.7 p.p.m. The 1 2-orthoester ring structure [O2,C(me)OR] gives characteristic resonances at 24.5 ±0.2 p.p.m. for the methyl, and at 124.0 ±0.5 p.p.m. for the quaternary, carbon atom.  相似文献   

15.
Abstract

Reaction of the silylated 6-azauracil (2) with 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-D-glucose (3) gave 1-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-ß-D-glucopyranosyl)-6-azauracil (4), which gave the free nucleoside 5 on deblocking. Acetalation of 5 gave the monoacetal 6 which was oxidized into the ketone 7. Reduction of 7 gave the allo-nucleoside 9 which on hydrolysis afforded the free nucleoside 10. Alternatively, compound 10 was obtained from mesylation of 6 to give 8 followed by subsequent acetolysis and hydrolysis.  相似文献   

16.
Reaction of 2,3-di-O-acetyl-1,6-anhydro-β-D-galactopyranose (2) with 2,3,4,6-tetra- O-acetyl-α-D-galactopyranosyl bromide in the presence of mercuric cyanide and subsequent acetolysis gave 1,2,3,6-tetra-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl)-α-D-galactopyranose (4, 40%) and 1,2,3,6-tetra-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-α-D-galactopyranose (5, 30%). Similarly, reaction of 2,4-di-O-acetyl-1,6-anhydro-β-D-galactopyranose (3) gave 1,2,4,6-tetra-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl)-α-D-galactopyranose (6, 46%) and 1,2,4,6-tetra-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-α-D-galactopyranose (7, 14%). The anomeric configurations of 4-7 were assigned by n.m.r. spectroscopy. Deacetylation of 4-7 afforded 4-O-α-D-galactopyranosyl-D-galactose (8), 4-O-β-D-galactopyranosyl-D-galactose (9), 3-O-α-D-galactopyranosyl-D-galactose (10), and 3-O-β-D-galactopyranosyl-D-galactose (11), respectively.  相似文献   

17.
A new route is described for preparing methyl 4,6-di-O-methyl-α-d-mannopyranoside (5) via methyl 2,3-di-O-p-tolylsulfonyl-α-d-mannopyranoside (3) as an intermediate. The retention of the mannopyranoside configuration and ring form was confirmed by proton n.m.r. spectroscopy and by m.s. of peracetylated aldononitrile derivatives. Mass-spectral fragmentation-pathways previously proposed were confirmed for 5-O-acetyl-2,3,4,6-tetra-O-methyl-, 2,5-di-O-acetyl-3,4,6-tri-O-methyl-, and 3,5-di-O-acetyl-2,4,6-tri-O-methyl-d-mannononitrile.  相似文献   

18.
Starting from myo-inositol, 1,2-O-isopropylidene-3,4,5,6-tetra-O-(methylsulfonyl)-, 1,4,5,6-tetra-O-(methylsulfonyl)-, and 2,3-di-O-acetyl-1,4,5,6-tetra-O-(methylsulfonyl)-myo-inositol (3) were synthesized. Compound 3 was treated with sodium azide to give 3-azido-3-deoxy-1,5,6-tri-O-(methylsulfonyl)-muco-inositol, reduction of whose diacetate led to a mixture of 3-amino-3-deoxy- and 3-acetamido-2-O-acetyl-3-deoxy-1,5,6-tri-O-(methylsulfonyl)-muco-inositol. The configurations and conformations of these compounds were ascertained by n.m.r. spectroscopy. 3-Acetamido-3-deoxy-1,5,6-tri-O-(methylsulfonyl)-muco-inositol and its 2,4-diacetate are also described.  相似文献   

19.
《Carbohydrate research》1986,154(1):93-101
O-β-d-Galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose has been synthesised by reaction of benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-β-d-galactopyranosyl)-β-d-glucopyranoside with 2,3,4-tri-O-benzyl-α-l-fucopyranosyl bromide in the presence of mercuric bromide, followed by hydrogenolysis. Benzylation of benzyl 3′,4′-O-isopropylidene-β-lactoside, via tributylstannylation, in the presence of tetrabutylammonium bromide or N-methylimidazole, gave benzyl 2,6-di-O-benzyl-4-O-(6-O-benzyl-3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (6). α-Fucosylation of 6 in the presence of tetraethylammonium bromide provided either benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyransoyl)-β-d- galactopyranosyl]-β-d-glucopyranoside (13, 73%) or a mixture of 13 (42%) and benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4,-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d- galactopyranosyl-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d-glucopyranoside (16, 34%). α-Fucosylation of 13 in the presence of mercuric bromide and 2,6-di-tert-butyl-4-methylpyridine gave 16 (73%). Hydrogenolysis and acid hydrolysis of 13 and 16 afforded O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-d-glucose and O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose, respectively.  相似文献   

20.
The seeds of Anthocephalus indicus contain a water-soluble polysaccharide composed of D-xylose, D-mannose, and D-glucose in the molar ratios 1:3:5. Methylation analysis afforded 2,3,4-tri-O-methyl-D-xylose, 2,3,6,-tri-O-methyl-D-mannose, 2,3,6-tri-O-methyl-D-glucose, 2,3-di-O-methyl-D-glucose, and 2,3,4,6-tetra-O-methyl-D-glucose in the molar ratios 7:21:12:15:8. Periodate oxidation and methylation data indicated 22.5% and 21.9% of end groups, respectively. The above findings, together with the results of partial hydrolysis with acid, indicate the polysaccharide to consist of a linear chain of (1→4)-linked β-D-mannosyl and β-D-glucosyl residues to which α-D-xylosyl and β-D-glucosyl groups are attached by (1→6)-linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号