首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the partial correction of our previous paper and with some new results in regard to ammonolysis of the epoxide ring of 2,3-anhydroribofuranoside derivatives.

Treatment of methyl 2,3-anhydro-5-deoxy-α-d-ribofuranoside, prepared from d-xylose, with ammonia gave methyl 2-amino-2,5-dideoxy-α-d-arabinoside and no methyl 3-amino-3,5-dideoxy-α-d-xyloside which we reported to obtain previously.

The exclusive attack of the nucleophilic reagent at C-2 is inconsistent with a result of C. D. Anderson et al. in regard to ammonolysis of methyl 2,3-anhydro-α-d-ribofuranoside.

In contrast to α-anomer, methyl 2,3-anhydro-5-deoxy-β-d-ribofuranoside gave mainly methyl 3-amino-3,5-dideoxy-β-d-xyloside. The difference of ammonolysis products between α- and β-anomer will be due to existence of steric hindrance.  相似文献   

2.
β-Xylosidase was purified 662 fold from a culture filtrate by ammonium sulfate fractionation, gel filtration on Biogel P-100, DEAE-Sephadex chromatography, and gel filtration on Sephadex G-200. With isoelectric focusing, the purified β-xylosidase found to be homogeneous on SDS (sodium dodecyl sulfate) polyacrylamide gel electrophoresis. The molecular weight was estimated by gel filtration to be 240,000, and 116,000 by SDS polyacrylamide gel electrophoresis. The purified β-xylosidase had an isoelectric point at pH 3.25, and contained 4% carbohydrate residue. The optimum pH was found to be in the range of 4.5 ~ 5, and the optimum temperature was 55°C. The enzyme activity was inhibited by Hg2 +, SDS, and N-bromosuccinimide at a concentration of 1 × 10?3 m, and also p-chloromercuribenzoate at a concentration of 1 × 10?4m. The purified enzyme hydrolyzed phenyl β-d-xyloside (ko = 302.6 sec?1),β-nitrophenyl β-d-xyloside (ko = 438.9 sec?1), o-nitrophenyl β-d-xyloside (ko = 431.0 sec?1), p-chlorophenyl β-d-xyloside (ko = 207.9 sec?1), o-chlorophenyl β-d-xyloside (ko = 211.8 sec?1), β-methylphenyl β-d-xyloside ko = 96.5 sec?1), o-methylphenyl β-d-xyloside (ko = 83.1 sec?1), p-methoxyphenyl β-d-xyloside (ko = 99.3 sec?1), o-methoxyphenyl β-d-xyloside (ko= 100.0 sec?1), xylobiose (ko = 992A sec?1), xylotriose (ko = 1321.9 sec?1), xylotetraose (ko = 7S9.1 sec?1) and xylopentaose (ko = 508.0 sec?1). On enzymic hydrolysis of phenyl β-d-xyloside, the reaction product was found to be β-d-xylose with retention of the configuration. The purified β-xylosidase was practically free of a-xylosidase and β-glucosidase activities.  相似文献   

3.
Xylanase induction by β-xyloside was investigated in non-growing conditions using non-induced mycelia of Streptomyces sp. No. 3137 harvested from glucose medium. The mycelia started to produce xylanase without lag time when β-xyloside was added. The rate of xylanase synthesis was dependent on the concentration of β-xyloside added to the inducing culture medium. The induction constants of various β-xylosides were calculated from the Lineweaver-Burk plots; those of methyl-, isopropyl-, butyl- and ethylencyanohydrin-β-d-xylosides were 10.53 mm, 3.83 mm, 0.55mm and 0.25 mm, respectively. Some α-xylosides repressed xylanase synthesis. The rate of xylanase synthesis decreased suddenly after the addition of α-xyloside. The inhibition constants of methyl-, ethyl- and isopropyl-α-d-xylosides were 8.80 mm, 12.50 mm and 33.33 mm, respectively. The xylanase induction was also repressed by glucose. However, this repression was completely restored after consuming additional glucose.  相似文献   

4.
β-Xylosidase was purified 25 fold from a culture filtrate by ammonium sulfate fractionation, DEAE-Sephadex chromatography, column electrophoresis, gel filtration on Biogel P-100, and isoelectric focusing. The purified β-xylosidase was found to be homogeneous on SDS (sodium dodecyl sulfate) polyacrylamide gel electrophoresis and on disc electrophoresis. A molecular weight of 101,000 was estimated by chromatography on Sephadex G-200, and 102,000 was obtained by SDS polyacrylamide gel electrophoresis. The purified p-xylosidase had an isoelectric point at pH 4.45, and contained 4.5% carbohydrate residue. The optimum activity for the enzyme was found to be at pH 4.5 and 55°C. The enzyme activity was inhibited by Hg2 +, and N-bromosuccinimide at a concentration of 1 x 10?3 m. The purified enzyme hydrolyzed phenyl β-d-xyloside (ko13.0 sec”1), p-nitrophenyl β-d-xyloside (ko=2l.3 sec?1), o-nitrophenyl β-d-xyloside (ko = 22.2 sec?1), o-chlorophenyl β-d-xyloside (ko = 20.0 sec?1), p-methylphenyl β-d-xyloside (ko~9.0 sec?1), o-methylphenyl β-d-xyloside (ko= 10.7 sec?1), p-methoxyphenyl β-d-xyloside (ko=10.3 sec?1), o-methoxyphenyl β-d-xyloside (&;o=10.9 sec?1), xylobiose (ko = 36A sec?1), xylotriose (ko = 34.5 sec?1), xylotetraose (ko~HA sec?1), and xylopentaose (ko= 13.0 sec?1). On enzymic hydrolysis of phenyl β-d-xyloside, the reaction product was found to be β-d-xylose with retention of configuration. The purified p-xylosidase was practically free of α-xylosidase and β-glucosidase activities.  相似文献   

5.
The glucomannan isolated from larch holocellulose was hydrolyzed by a purified endo-d-β-mannanase. The products were fractionated by gel filtration on a Polyacrylamide gel in water and partition chromatography on ion exchange resins in 80% ethanol. The following oligosaccharides were isolated and identified: (a) 4-O-β-d-Manp-d-Man, (b) 4-O-β-d-Glcp-d-Man, (c) 4-O-β-d-Glcp-d-Glc, (d) O-β-d-Manp-(1 →4)-O-β-d-Manp-(1 →4)-d-Man, (e) O-β-dGlcp-(l →4)-O-β-d-Manp-(l →4)-d-Man, (f) O-β-d-Manp-(l →4)-Oβ-d-Glcp-(l →4)-d-Man, (g) O-β-d-Manp-(l →4)-O-[α-d-Galp-(l →6)]-d-Man, (h) O-β-d-Manp-(l →4)-O-β-d-Manp-(l →4)-O-β-d-Manp-(l →4)-d-Man, and (i) O-β-d-Glcp-(1 →4)-O-β-d-Manp-(1 →4)-O-β-d-Manp-(1 →4)-d-Man.  相似文献   

6.
Two β-d-glucosidases were purified to homogeneity from Bifidobacterium breve 203: one ( β-d-glucosidase I; molecular weight, 96,000) showed reactivity toward p-nitrophenyl (p-NP) β-d-fucoside, 74% of that to p-NP β-d-glucoside, and the other ( β-dglucosidase II; molecular weight, 450,000) did not. They also differed in their thermal and pH stabilities. Laminaribiose, cellobiose and gentiobiose were hydrolyzed by β-d-glucosidase I, with 53%, 34% and 3% of the reactivity in the case of p-NP β-d-glucoside, and by β-dglucosidase II, with 53%, 6% and 107% of the reactivity. The reaction of β-dglucosidase I with p-NP β-dfucoside was enhanced by the addition of glucose and other monosaccharides to the reaction mixture, whereas that with p-NP β-dglucoside was not affected. The activity of β-dglucosidase II with p-NP β-dglucoside was inhibited by glucose.  相似文献   

7.
The electrophoretically homogeneous glucomannan isolated from konjac flour was composed of d-glucose and d-mannose residues in the approximate ratio of 1: 1.6. Controlled acid hydrolysis gave 4-O-β-d-mannopyranosyl-d-mannose, 4-O-β-d-mannopyranosyl-d-glucoseT 4-O-β-d-glucopyranosyl-d-glucose(cellobiose), 4-O-β-d-glucopyranosyl-d-mannose(epicellobiose), O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose, O-β-d-glucopyranosyl- (1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose, O-β-d-mannopyranosyl-(1→4)-O-β-d-glucopy- ranosyl-(1→4)-d-mannose and O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(1→4)-d-mannose.  相似文献   

8.
A β-xyloside hydrolytic enzyme of the fungus Chaetomium trilaterale was further purified by a modification of Kawaminami’s procedure (DEAE-Sephadex A-25 and Sephadex G-75 column chromatography), followed by isoelectric focusing. The purified preparation was homogeneous by polyacrylamide disc gel electrophoreses at pH 4.3 and pH 8.3. The purified enzyme hydrolyzed β-d-glucopyranosides as well as β-d-xylopyranosides, and the ratio of β-glucosidase activity against β-xylosidase activity increased about 3 fold during the purification steps. The molecular weight of this preparation was estimated to be about 240,000 by Sephadex G-200 gel filtration and 118,000 by SDS-polyacrylamide slab gel electrophoresis. The isoelectric point was 4.86 and the amino acid composition was also determined.

The optimum pH was at 4.2 for phenyl β-d-glucoside and around 4.5 for phenyl β-d-xyloside. The β-xylosidase activity was relatively stable but β-glucosidase activity was rapidly inactivated, at the alkaline pH range above 11. The heating of the preparation at 60°C didn’t show a parallel inactivation of the two activities. N-Bromosuccinimide strongly inactivated both enzyme activities. Nojirimycin and glucono-l,5-lactone showed a stronger inhibition on β-xylosidase activity than on β-glucosidase activity. The maximal velocities decreased in the order; phenyl β-d-glucoside > cellobiose > phenyl β-d-xyloside > xylobiose; the value with phenyl β-d-glucoside was about 28-fold higher than that with phenyl β-d-xyloside.  相似文献   

9.
The chemical structure of cell wall β-d-glucans as well as the activities of lytic enzymes such as β-1,3-d-glucanase and β-1,6-d-glucanase changed during the growth of Neurospora crassa.

A dramatic change in the cell wall β-d-glucan structure was observed between cells of the middle logarithmic phase and ones of the late logarithmic phase. The ratio of 1,3-linked glucose residues to non reducing terminal glucose residues decreased from 85 to 55 and the ratio of gentiobiose as a hydrolysis product with exo-β-1,3-d-glucanase increased significantly between the two phases.

Two prominent peaks of β-1,3-d-glucanase as well as the β-1,6-d-glucanase activities appeared in the culture filtrate at different growth stages, the early logarithmic phase and the stationary phase. In the cell wall, β-d-glucosidase activity instead of the β-l,6-d-glucanase and β-1,3-d-glucanase activities was observed in the late logarithmic phase.  相似文献   

10.
A glucomannan isolated from konjac flour was hydrolyzed with commercially available crude and purified cellulases. The following oligosaccharides were isolated from the hydrolyzate and identified: (a) 4-O-β-d-mannopyranosyl-d-monnose (b) 4-O-β-d-mannopyranosyl-d-glucose (c) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose (d) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-glucose (e) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose (f) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-glucose (g) O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-glucose (h) 4-O-β-d-glucopyranosyl-d-glucose(cellobiose) (i) 4-O-β-d-glucopyranosyl-d-mannose (epicellobiose) (j) O-β-d-glucopyranosyl-(1→4)-O-β-d-mannopyranosyl-(1→4)-d-mannose. Of these saccharides, (h), (i) and (j) were isolated from the hydrolyzate by purified cellulase, while (g) was isolated from the hydrolyzate by crude cellulase. The others were all present in the hydrolyzates both by crude and by purified cellulases.  相似文献   

11.
A new procedure which involves 1-trichloroacetyl sugars as the starting material has been developed for the synthesis of purine nucleosides. 7-β-d-Glucopyranosyl-, 7-β-d-xylopyranosyl-, 7-β-d-ribopyranosyl-theophylline, 9-(tetra-O-acetyl-β-d-glucopyranosyl)-2,6,8-trichloropurine and 9-β-d-glucopyranosyl adenine were prepared in good yields by the reaction in fusion of purine bases with 1-trichloroacetyl sugars, using zinc chloride, p-toluenesulfonic acid, or ethyl polyphosphate as catalyst. 9-d-Ribofuranosyl adenine was also prepared by the same procedures, although the anomeric configuration of the compound is not yet definite. The effect of catalysts on the yields of purine nucleosides is discussed.  相似文献   

12.
transglucosylation by a β-d-glucosidase from cycad seeds. These azoxyglycosides, named neocycasin H, I, and J, were identified as O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(l→3)-O-β-d-glucopyranoside of methylazoxymethanol (MAM), O-β-d-glucopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, and O-β-d-glucopyranosyl-(1→3)-[O-β-d-xylopyranosyl-(1→6)]-O-β-d-glucopyranoside of MAM, respectively. On the basis of their structures, the mechanism of the formation of these neocycasins is also discussed.  相似文献   

13.
Acremonium sp. 15 a fungus isolated from soil, produces an extracellular enzyme system degrading cyclic (1→2)-β-d-glucan. This enzyme was found to be a mixture of endo-(1→2)-β-d-glucanase and β-d-glucosidase. The (1→2)-β-d-glucanase was purified to homogeneity shown by disc-electrophoresis after SP-Sephadex column chromatography, Sephadex G-75 gel filtration, and rechromatography on SP-Sephadex. The molecular weight of the enzyme was 3.6 × 104 by SDS-polyacrylamide gel electrophoresis. The isoelectric point of the enzyme was pH 9.6. The enzyme was most active at pH 4.0—4.5, and stable up to 40°C in 20 mm acetate buffer (pH 5.0) for 2 hr of incubation. This enzyme hydrolyzed only (l→2)-β-d-glucan and did not hydrolyze laminaran, curdlan, or CM-cellulose. The hydrolysis products from cyclic (1→2)-β-d-glucan were mainly sophorose.

The β-d-glucosidase was purified about 4000-fold. The rate of hydrolysis of the substrates by this β-d-glucosidase decreased in the following order: β-nitrophenyl-β-d-glucoside, sophorose, phenyl-β-d-glucoside, laminaribiose, and salicin. This enzyme has strong transfer action even at the low concentration of 0.75 mm substrate.  相似文献   

14.
Some enzymatic properties of Malbranchea β-xylosidase were investigated. The β- xylosidase activity was inhibited by Hg2+, Zn2+, Cu2+, N-bromosuccinimide, p-chloromercuribenzoate and sodium laurylsulfate, while this activity was activated by Ca2+. The enzyme released xylose as the end product even from 10% xylobiose solution without forming any xylooligosaccharides. The enzyme well acted on aryl-β-d-xylosides, but showed no activity on alkyl-β-d-xylosides, and it was practically free from glucosidase activity. The Km and Vmax values of this enzyme for xylobiose were calculated to be 2.86 × 10?8 m and 34.5 μmoles/mg/min, respectively, and these values determined for phenyl-β-d-xyloside were 3.01 × 10?8 m and 16.2 μmoles/mg/min, respectively.  相似文献   

15.
Rubusoside derivatives by transgalactosylation of various β-galactosidases were isolated and their structures were analyzed. Escherichia coli β-galactosidase produced mainly 13-O-β-d-glucosyl-19-O-[β-d-galactosyl-(1→6)-β-d-glucosyl]-steviol (RGal-2). Bacillus circulans β-galactosidase produced mainly 13-O-β-d-glucosyl-19-O-[β-d-galactosyl-(1→4)-β-d-glucosyl]-steviol (RGal-1a) in the early stage of the reaction and then produced 13-O-[β-d-galactosyl-(1→4)-β-d-glucosyl]-19-O-β-d-glucosyl-steviol (RGal-1b). With decreasing the amount of these products (RGal-1a and RGal-1b), RGal-2 was produced.  相似文献   

16.
During an examination of components contributing to the bitter taste of asparagus bottom cut (Asparagus officinalis L.), two new furostanol saponins were isolated from roots extractives. Their chemical structures were established as 5β-furostane-3β,22,26 triol-3-O-β-d-glucopyranosyl (1→2)-β-d-glucopyranoside 26-O-β-d-glucopyranoside and 5β-furostane-3β,22,26 triol-3-O-β-d-glucopyranosyl (1→2) [β-d-xylopyranoxyl (1→4)]-β-d-glucopyranoside 26-O-β-d-glucopyranoside respectively.  相似文献   

17.
A xyloglucan (MBXG) from the cell walls of etiolated mung bean hypocotyls was characterized by analyzing the fragment oligosaccharides from controlled degradation products of the polymer with acid and enzyme.

Cellobiose, cellotriose and cellotetraose were isolated from the partial acid hydrolyzate of MBXG. Isoprimeverose (6-O-α-d-xylopyranosyl-d-glucopyranose) and a pentasaccharide, α-l-fucosyl-(1 → 2)-β-d-galactosyl-(1 → 2)-α-d-xylosyl-(1 → 6)-β-d-glucosyl-(1 → 4)-d-glucose, were isolated from the hydrolyzate of MBXG with an Asp. oryzae enzyme preparation.  相似文献   

18.
The β-d-glucosidase (EC. 3.2.1.21) activity of Bifidobacterium breve 203 was increased by acclimation with cellobiose, and the enzyme was purified to homogeneity from cell-free extracts of an acclimatized strain of B. breve clb, by ammonium sulfate fractionation and column chromatographies of anion-exchange, gel filtration, Gigapaite, and hydrophobic interaction. This enzyme had not only β- d-glucosidase activity but also β- d-fucosidase activity, which is specific to Bifidobacteria in intestinal flora. The molecular weight of the purified enzyme was estimated to be 47,000–48,000 and the enzyme was assumed to be a monomeric protein. The optimum pH and temperature of the enzyme were around 5.5 and 45°C, respectively. The enzyme was stable up to 40°C and between pH 5 and 8. The isoelectric point of the enzyme was 4.3 and the Km values for p-nitrophenyl-β-d-glucoside and p-nitrophenyl-β-d-fucoside were 1.3mm and 0.7 mm, respectively. This enzyme had also transferase activity for the β-d-fucosyl group but not for the β-d-glucosyl group. The N-terminal amino acid sequence of this enzyme was similar to those of β-d-glucosidase from other bacteria, actinomycetes, and plants.  相似文献   

19.
Methyl 2,5-di-O-p-nitrobenzoyl-β-d-ribofuranoside was prepared via methyl 2,3-O-ethoxyethylidene-β-d-ribofuranoside from d-ribose. It was condensed with 3,4,6-tri-O-acetyl-2-deoxy-2-(2′,4′-dinitroanilino)-α-d-glucopyranosyl bromide and 3,4-di-O-acetyl-2,6-dideoxy-2-(2′,4′-dinitroanilino)-6-phthalimido-α-d-glucopyranosyl bromide by a modified Königs-Knorr reaction to give neobiosamine analogs. The condensation reaction gave α-glucosides as the minor product, and the corresponding β-glucoside as the major product.  相似文献   

20.
Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号