首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and pharmacological evaluation of new 3-(imidazol-4(5)-ylmethylene)-2,3-dihydrobenzo[b]furan-2-ones 8-10 and 3-(3,5-dimethylpyrrol-2-ylmethylene)-2,3-dihydrobenzo[b]furan-2-one 11, analogues of SU-5416, as potential inhibitors of angiogenesis, are reported. Compounds 8 and 11 were prepared by a Knoevenagel reaction starting from 2-hydroxyphenylacetic acid 2 and 4-formylimidazole 5 or 2-formyl-3,5-dimethylpyrrole 7, followed by acid-catalysed cyclodehydration. For compounds 9 and 10, an alternative method was used; it consisted in carrying out the Knoevenagel reaction with the 2,3-dihydrobenzo[b]furan-2-ones 3 and 4. The antiangiogenic activity of these compounds was evaluated in the three-dimensional in vitro rat aortic rings test at 1 μM. At this concentration, compound 11 induced a decrease of angiogenesis comparable to that observed with SU-5416; the vascular density index at 1 μM of 11 and SU-5416 were 30±10 and 22±4% of control, respectively.  相似文献   

2.
Abstract: The binding characteristics of the novel 11C-labeled nicotinic ligands (R,S)-1-methyl-2-(3-pyridyl) azetidine (MPA) and (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl)isoxazole (ABT-418) were investigated in comparison with those of (S)-[11C]nicotine in vitro in the rat brain to be able to predict the binding properties of the new ligands for positron emission tomography studies in vivo. The data from time-resolved experiments for all ligands indicated fast binding kinetics, with the exception of a slower dissociation of [11C]MPA in comparison with (S)-[11C]nicotine and [11C]ABT-418. Saturation experiments revealed for all ligands two nicotinic receptor binding sites with affinity constants (KD values) of 2.4 and 560 nM and binding site densities (Bmax values) of 65.5 and 223 fmol/mg of protein for (S)-[11C]nicotine, KD values of 0.011 and 2.2 nM and Bmax values of 4.4 and 70.7 fmol/mg of protein for [11C]MPA, and KD values of 1.3 and 33.4 nM and Bmax values of 8.8 and 69.2 fmol/mg of protein for [11C]ABT-418. In competing with the 11C-ligands, epibatidine was most potent, followed by cytisine. A different rank order of potencies was found for (?)-nicotine, (+)-nicotine, MPA, and ABT-418 displacing each of the 11C-ligands. Autoradiograms displayed a similar pattern of receptor binding for all ligands, whereby [11C]MPA showed the most distinct binding pattern and the lowest nonspecific binding. We conclude that the three 11C-labeled nicotinic ligands were suitable for characterizing nicotinic receptors in vitro. The very high affinity of [11C]MPA to nicotinic acetylcholine receptors, its low nonspecific binding, and especially the slower dissociation kinetics of the [11C]MPA from the putative high-affinity nicotinic acetylcholine receptor binding site compared with (S)-[11C]nicotine and [11C]ABT-418 raise the level of interest in [11C]MPA for application in positron emission tomography.  相似文献   

3.
O-Peracetylated or -perbenzoylated C-(1-bromo-1-deoxy-d-glycopyranosyl)formamides of d-gluco, d-galacto, and d-arabino configuration were reacted with Ag(I)-salts or HgO in nitrile solvents to give N-acyl-1-cyano-d-glycopyranosylamines with an axial C–N bond at the anomeric centre. In the presence of HgBr2, Hg(CN)2, or InCl3 the anomer of the above glycosylamine with an equatorial C–N bond was also isolated or detected. In CH3NO2 solutions as few as 5–10 equiv of the nitrile were sufficient to get acceptable yields for the products. Under similar conditions N-substituted C-(2,3,4,6-tetra-O-acetyl-1-bromo-1-deoxy-β-d-galactopyranosyl)formamides gave anomeric spiro-oxazoline derivatives which, upon mild acidic hydrolysis, opened up to di- and tripeptides of anomeric α-amino acids.  相似文献   

4.
Robert H. White 《Chirality》1996,8(4):332-340
The configuration at the C-9 of methanopterin (MPT) has been determined by comparing the circular dichroism (CD) spectra of MPT and its hydrolytic fragment, 1-[4-[[1-(2-amino-7-methyl-4-hydroxy-6-pteridinyl)-ethyl]amino]phenyl]-1-deoxy-D -ribitol (HP-1), with the CD spectra of a series of model compounds of known stereochemistry. These compounds included (S)-6-[1-(4-carboxymethylanilino)ethyl]pterin, (S-6(1-hydroxyethyl)-7-methylpterin, (S-6-(1-hydroxyethyl)pterin, (R)-6-(1-phenoxyethyl)pterin, D (+)-neopterin, and L -biopterin. From this comparison it was concluded that MPT has the R configuration at C-9 and is thus configurationally related to D (+)-neopterin, which has the S configuration at C-1. From previous work establishing the relative stereochemistry at C-6, C-7, and C-9 of N5-N10-methenyl-5,6,7,8-tetrahydromethanopterin (N5-N10-methenyl-H4MPT) as R, S, and R, respectively, it is clear that the remaining asymmetric carbons at C-6 and C-7 of H4MPT have the S and S configuration, respectively. Comparison of these latter two positions to the equivalent carbons in 5,6,7,8-tetrahydrofolate (H4folate) show that the steps involved in the biological reduction of MPT to H4MPT occur with the same stereochemical outcome as those involved in the biological reduction of folate to H4folate. © 1996 Wiley-Liss, Inc.  相似文献   

5.
New series of 2(or 3)-arylmethylenenaphtho[2,1-b]furan-3(or 2)-ones were synthesized, characterized and tested for anticancer properties in vitro. The target compounds were prepared by Knoevenagel coupling between the naphthofuranones 3, 2830 and formyl derivatives. 2-(4-Oxo-1-benzopyran-3-ylmethylene)naphtho[2,1-b]furan-3-one 36 was the most active compound (IC50 (L1210) = 1.6 μM). These compounds were also evaluated, in an independent manner, as inhibitors of Src protein tyrosine kinase, but only minor activity was observed.  相似文献   

6.
Abstract

Aromatic α-halohydrins, particularly 2-haloethanols as significant precursor of drugs, can easily be converted to chiral β-adrenergic receptor blockers. Eight strains of Lactobacillus curvatus were tested as biocatalysts for asymmetric reduction of 2-bromo-1-(naphthalen-2-yl)ethanone 1 to 2-bromo-1- (naphthalen-2-yl) ethanol 2. The parameters of the bioreduction were optimized using L. curvatus N4, the best biocatalyst found. As a result, (R)-2-bromo-1-(naphthalen-2-yl)ethanol 2, which can be β-adrenergic receptor blocker precursor, was produced for the first time in high yield and enantiomerically pure form using biocatalysts. Moreover, the gram scale synthesis was performed and 7.54?g of (R)-2 was synthesized as enantiopure form (enantiomeric excess >99%) in 48?h. The important advantages of this process are that it produces of (R)-2 for the first time in enantiopure form, in excellent yield and under environmentally friendly and moderate reaction conditions. This system is of the potential to be applied at a commercial scale.  相似文献   

7.
(S)-1-(2-Naphthyl)ethanol was yielded by immobilized pea (Pisum sativum L.) protein (IPP) from (R, S) 2-naphthyl ethanol (>99% ee, yield; about 50%), in which the (R)-enantiomer was selectively oxidized to 2-acetonaphthone. IPP could be reused consecutively at least three times without any decrease of yield and optical purity.  相似文献   

8.
The 2-ketoreductase from Gluconobacter oxydans (SC 13851) catalyzes the reduction of 2-pentanone to (S)-(+)-2-pentanol. The 2-ketoreductase was purified 295-fold to homogeneity from G. oxydans cell extracts. The purified 2-ketoreductase had a molecular mass of 29 kDa with a specific activity of 17.7 U/mg. (S)-(+)-2-pentanol was prepared on a pilot scale (3.2 kg of 2-pentanone input) using Triton X-100-treated G. oxydans cells. After 46 h, 1.06 kg (32.3 M%) of (S)-(+)-2-pentanol of >99% enantiomeric excess (ee) was produced. Journal of Industrial Microbiology & Biotechnology (2000) 25, 171–175. Received 01 May 2000/ Accepted in revised form 28 June 2000  相似文献   

9.
Abstract: [(2S,2′R,3′R)-2-(2′,3′-[3H]Dicarboxycyclopropyl)glycine ([3H]DCG IV) binding was characterized in vitro in rat brain cortex homogenates and rat brain sections. In cortex homogenates, the binding was saturable and the saturation isotherm indicated the presence of a single binding site with a KD value of 180 ± 33 nM and a Bmax of 780 ± 70 fmol/mg of protein. The nonspecific binding, measured using 100 µM LY354740, was <30%. NMDA, AMPA, kainate, l (?)-threo-3-hydroxyaspartic acid, and (S)-3,5-dihydroxyphenylglycine were all inactive in [3H]DCG IV binding up to 1 mM. However, several compounds inhibited [3H]DCG IV binding in a concentration-dependent manner with the following rank order of potency: LY341495 = LY354740 > DCG IV = (2S,1′S,2′S)-2-(2-carboxycyclopropyl)glycine > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid > (2S,1′S,2′S)-2-methyl-2-(2-carboxycyclopropyl)glycine > l -glutamate = ibotenate > quisqualate > (RS)-α-methyl-4-phosphonophenylglycine = l (+)-2-amino-3-phosphonopropionic acid > (S)-α-methyl-4-carboxyphenylglycine > (2S)-α-ethylglutamic acid > l (+)-2-amino-4-phosphonobutyric acid. N-Acetyl-l -aspartyl-l -glutamic acid inhibited the binding in a biphasic manner with an IC50 of 0.2 µM for the high-affinity component. The binding was also affected by GTPγS, reducing agents, and CdCl2. In parasagittal sections of rat brain, a high density of specific binding was observed in the accessory olfactory bulb, cortical regions (layers 1, 3, and 4 > 2, 5, and 6), caudate putamen, molecular layers of the hippocampus and dentate gyrus, subiculum, presubiculum, retrosplenial cortex, anteroventral thalamic nuclei, and cerebellar granular layer, reflecting its preferential (perhaps not exclusive) affinity for pre- and postsynaptic metabotropic glutamate mGlu2 receptors. Thus, the pharmacology, tissue distribution, and sensitivity to GTPγS show that [3H]DCG IV binding is probably to group II metabotropic glutamate receptors in rat brain.  相似文献   

10.
A reliable reversed-phase high-performance liquid chromatographic method has been developed for the determination of a new oral thrombin inhibitor (compound I) in the blood of rats and dogs. The analyte was deproteinized with a 1.5 volume of methanol and a 0.5 volume of 10% zinc sulfate, and the supernatant was injected into a 5-μm Capcell Pak C18 column (150×4.6 mm I.D.). The mobile phase was a mixture of acetonitrile and 0.2% triethylamine of pH 2.3 (31:69, v/v) with a flow-rate of 1.0 ml/min at UV 231 nm. The retention time of compound I was approximately 9.3 min. The calibration curve was linear over the concentration range of 0.05–100 mg/l for rat blood (r2>0.9995, n=6) and dog blood (r2>0.9993, n=6). The limit of quantitation was 0.05 mg/l for both bloods using a 100-μl sample. For the 5 concentrations (0.05, 0.1, 1, 10, and 100 mg/l), the within-day recovery (n=4) and precision (n=4) were 98.1–104.1% and 1.5–6.8% for rat blood and 95.4–105.7% and 1.4–5.3% for dog blood, respectively. The between-day recovery (n=6) and precision (n=6) were 99.8–105.3% and 3.7–12.6% for rat blood and 87.5–107.1% and 2.9–15.3% for dog blood, respectively. The absolute recoveries were 82.4–93.3%. No interferences from endogenous substances were observed. In conclusion, the presented simple, sensitive, and reproducible HPLC method proved and was used successfully for the determination of compound I in the preclinical pharmacokinetics.  相似文献   

11.
The biocatalytic reduction of 4-(trimethylsilyl)-3-butyn-2-one to enantiopure (R)-4-(trimethylsilyl)-3-butyn-2-ol was successfully conducted with high enantioselectivity using immobilized whole cells of a novel strain Acetobacter sp. CCTCC M209061, newly isolated from kefir. Compared with other microorganisms that were investigated, Acetobacter sp. CCTCC M209061 was shown to be more effective for the bioreduction reaction, and afforded much higher yield and product enantiomeric excess (e.e.). The optimal buffer pH, co-substrate concentration, reaction temperature, substrate concentration and shaking rate were 5.0, 130.6 mM, 30 °C, 6.0 mM and 180 r/min, respectively. Under the optimized conditions, the maximum yield and the product e.e. were 71% and >99%, respectively, which are much higher than those reported previously. Additionally, the established biocatalytic system proved to be efficient for the bioreduction of acetyltrimethylsilane to (R)-1-trimethylsilylethanol with excellent yield and product e.e. The immobilized cells manifested a good operational stability under the above reaction conditions since they retained 70% of their catalytic activity after ten cycles of use.  相似文献   

12.
Generally, recombinant and native microorganisms can be employed as whole-cell catalysts. The application of native hosts, however, shortens the process development time by avoiding multiple steps of strain construction. Herein, we studied the NAD(P)H-dependent reduction of o-chloroacetophenone by isolated xylose reductases and their native hosts Candida tenuis and Pichia stipitis. The natural hosts were benchmarked against Escherichia coli strains co-expressing xylose reductase and a dehydrogenase for co-enzyme recycling. Xylose-grown cells of C. tenuis and P. stipitis displayed specific o-chloroacetophenone reductase activities of 366 and 90 U gCDW–1, respectively, in the cell-free extracts. Fresh biomass was employed in batch reductions of 100 mM o-chloroacetophenone using glucose as co-substrate. Reaction stops at a product concentration of about 15 mM, which suggests sensitivity of the catalyst towards the formed product. In situ substrate supply and product removal by the addition of 40% hexane increased catalyst stability. Optimisation of the aqueous phase led to a (S)-1-(2-chlorophenyl)ethanol concentration of 71 mM (ee > 99.9%) obtained with 44 gCDW L–1 of C. tenuis. The final difference in productivities between native C. tenuis and recombinant E. coli was < 1.7-fold. The optically pure product is a required key intermediate in the synthesis of a new class of chemotherapeutic substances (polo-like kinase 1 inhibitors).  相似文献   

13.
High yield purification of soluble guanylate cyclase from bovine lung   总被引:1,自引:1,他引:0  
Soluble guanylate cyclase (sGC), the main target of nitric oxide (NO), is a cytosolic, heme-containing, heterodimeric enzyme that catalyzes the conversion of guanosine 5′-triphosphate (GTP) to 3,5′-cyclic guanosine monophosphate (cGMP) and pyrophosphate (PPi) in the presence of Mg2+. Cyclic GMP is then involved in transmitting the NO activating signals to a variety of downstream effectors such as cyclic-nucleotide-gated channels, protein kinases, and phosphodiesterases. In this work, sGC has been purified from bovine lung. The lungs were subjected to grinding and extraction with buffer at physiological pH followed by centrifugation. The resulting solution was subjected to successive column chromatography on DEAE- and Q-Sepharose, Ceramic Hydroxyapatite, Resource Q, and GTP–agarose. The purified enzyme migrated as a two-band protein on SDS–PAGE corresponding to sGC subunits α (Mr = 77,532) and β (Mr = 70,500) and had an A280nm/A430nm of 1 indicating one heme per heterodimer. The yield of enzyme was 8–10 mg from 4 to 5 kg bovine lungs. Vmax and Km of non-stimulated sGC were 22 nmol/mg/min and 180 μM, respectively. Upon stimulation with the NO donor 3-ethyl-3-(ethylaminoethyl)-1-hydroxy-2-oxo-1-triazene, the Vmax increased to 1330 nmol/mg/min while the Km dropped to 43 μM. The quality and quantity of enzyme make it suitable for studies to probe the structure and catalytic mechanism of this enzyme and for research related to drug discovery.  相似文献   

14.
Abstract

The stereoselective oxidation of (—)-isolongifolanol (1) with a longifolene skeleton by Aspergillus niger (NBRC 4414) as a biocatalyst and suppressive effect on umuC gene expression by chemical mutagens furylfuramid and AFB1 of the SOS response in Salmonella typhimurium TA1535/pSK1002 were investigated. Compound 1 was converted to a new terpenoid, (-)-(2S,8R)-8,12-dihydroxy-isolongifolanol (2). Its structure was determined by NMR, IR, specific rotation and mass spectrometry. The metabolites suppressed the SOS-inducing activity of furylfuramid and AFB1 in the umu test. Compound 1 suppressed 51% of the SOS-inducing activity against furylfuramid at < 1.0 mM. Compound 2 suppressed 15% and 24% of the SOS-inducing activity against furylfuramid and AFB1 at < 1.0 mM respectively.  相似文献   

15.
The present study aimed to evaluate the behaviour of larvae of Rhipicephalus microplus exposed to different stimuli. A Y-olfactometer was positioned vertically and R. microplus larvae were exposed to environmental air, CO2 alone, N,N-diethyl-3-methylbenzamide (DEET) alone, and CO2 combined with the repellents DEET and (E)-2-octenal. Tests were also conducted with the olfactometer positioned horizontally; in this case, however, only CO2 was tested. In all tests conducted with the Y-olfactometer positioned vertically, CO2 activated R. microplus larvae even in the presence of DEET and (E)-2-octenal, although activation was lower when these repellents were used. In the absence of CO2, larval behaviour against DEET was similar to that of the larvae in the control group. In the tests performed with the olfactometer positioned horizontally, the larvae had no significant response to the presence of CO2. The larvae were not attracted to or repelled by any compound tested in either the vertical or horizontal position of the olfactometer. The lack of horizontal displacement, attraction or repellence may have been a result of the ambush behaviour of this tick species. However, when larvae were exposed to stimuli and the olfactometer was positioned vertically, the interference of attractant and repellent stimuli in larval behaviour was assessed.  相似文献   

16.
A high-performance liquid chromatographic method was developed for the determination of a new non-narcotic analgesic, DA-5018 (I), in rat plasma, urine and bile samples, using propranolol for plasma samples and protriptyline for urine and bile samples as internal standards. The method involved extraction followed by injection of 100 μl of the aqueous layer onto a C18 reversed-phase column. The mobile phases were 5 mM methanesulfonic acid with 10 mM NaH2PO4 (pH 2.5)-acetonitrile, 70:30 (v/v) for plasma samples and 75:25 (v/v) for urine and bile samples. The flow-rates were 1.0 ml/min for plasma samples and 1.2 ml/min for urine and bile samples. The column effluent was monitored by a fluorescence detector with an excitation wavelength of 270 nm and an emission wavelength of 330 nm. The retention time for I was 4.8 min in plasma samples and 10.0 min in urine and bile samples. The detection limits for I in rat plasma, urine and bile were 20, 100 and 100 ng/ml, respectively. There was no interference from endogenous substances.  相似文献   

17.
A facile, sensitive and highly specific HPLC method for assaying 1-(2-chloroethyl)-3-sarcosinamide-1-nitrosourea (SarCNU) in plasma has been developed. The drug was efficiently isolated from plasma by extraction with tert.-butyl methyl ether. A structurally related compound with similar physicochemical properties served as the internal standard (I.S.). Following evaporation of the organic solvent, the extract was reconstituted with 0.05 M ammonium acetate buffer, pH 5.0, and loaded onto a 4 μm Nova-Pak C18 column (15 cm×3.9 mm), which was preceded by a 7 μm Brownlee RP-18 precolumn (1.5 cm×3.2 mm). Chromatography was performed at ambient temperature using a mobile phase of methanol-0.1 M ammonium formate buffer, pH 3.7 (25:75, v/v). UV absorbance of the effluent was monitored at 240 nm. A flow-rate of 1.0 ml/min was used for analyzing mouse and dog plasma extracts. Under these conditions, the drug eluted at 4.0 min and was followed by the I.S. at 6.1 min. An automatic switching valve was employed to allow the precolumn to be flushed 1.5 min into the run, without interrupting the flow of the mobile phase to the analytical column, thereby preventing the apparent build-up of extractable, strongly retained, UV-absorbing components present in mouse and dog plasma. Operating in this manner, more than 100 samples could be analyzed during a day using a refrigerated autosampler for overnight injection. The method was readily adapted to the determination of SarCNU in human plasma by simply decreasing the eluent flow-rate to 0.6 ml/min, whereby SarCNU and the I.S. eluted at approximately 5.8 and 9.1 min, respectively. Furthermore, the switching valve was not necessary for the analysis of human plasma samples. With a 50-μl sample volume, the lowest concentration of SarCNU included in the plasma standard curves, 0.10 μg/ml, was quantified with a 7.8% R.S.D. (n=27) over a 2 month period. Plasma standards, with concentrations of 0.26 to 5.1 μg/ml, exhibited R.S.D. values ranging from 1.3 to 4.7%. Thermospray-ionization MS detection was used to definitively establish the specificity of the method. The sensitivity of the assay was shown by application to be more than adequate for characterizing the plasma pharmacokinetics of SarCNU in mice.  相似文献   

18.
A new bis heterocycle comprising both bioactive 2-aminopyrimidine and thiazolidin-4-one nuclei namely 3-(4′-(4″-fluorophenyl)-6′-phenylpyrimidin-2′-yl)-2-phenylthiazolidin-4-one 3 was synthesized, characterized with the help of melting point, elemental analysis, FT-IR, MS, one-dimensional NMR (1H, 13C) spectra and we evaluated the chemopreventive potential of 3-(4′-(4″-fluorophenyl)-6′-phenylpyrimidin-2′-yl)-2-phenylthiazolidin-4-one based on in vivo inhibitory effects on 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch carcinogenesis. Administration of 3 effectively suppressed oral carcinogenesis initiated with DMBA as revealed by the reduced incidence of neoplasms. Lipid peroxidation, glutathione (GSH) content, and the activities of glutathione peroxidase (GPx), glutathione S-transferase (GST) were used to biomonitor the chemopreventive potential of 3. Lipid peroxidation was found to be significantly decreased, whereas GSH, GPx, GST, and GGT were elevated in the oral mucosa of tumor-bearing animals. Our data suggest that 3 may exert its chemopreventive effects in the oral mucosa by modulation of lipid peroxidation and enhancing the levels of GSH, GPx, and GST.  相似文献   

19.
First enantioselective synthesis of S-(-)-1-[3-(4-tert-butylphenyl)-2-methyl]propyl-cis-3,5-dimethylmorpholine (6), biologically active enantiomer of the systematic fungicide fenpropimorph, is reported. It comprises reacting 4-tert-butylbenzylbromide with methyldiethylmalonate, decarbethoxylation of 2 into racemic 3-(4-tert-butylphenyl)-2-methylpropionic acid ethylester (3) in DMSO in the presence of alkali, then Pseudomonas sp. lipase catalyzed kinetic resolution of racemic 3 into S-(+)-acid (4), base-catalyzed racemization and recycling of the R-(-)-ester 3, acylation of cis-3,5-dimethylmorpholine, and final reduction of the intermediary amide 5 to provide enantiomerically pure S-(-)-6.  相似文献   

20.
Synthesis of (R)-2-trimethylsilyl-2-hydroxyl-propionitrile via asymmetric transcyanation of acetyltrimethylsilane with acetone cyanohydrin in an aqueous/organic biphasic system catalyzed by (R)-hydroxynitrile lyase from Prunus japonica seed meal was successfully carried out for the first time. The optimal volume ratio of aqueous to organic phase, buffer pH value and reaction temperature were 15% (v/v), 5.0 and 30°C, respectively, under which both substrate conversion and product enantiomeric excess (ee) were 99%. Silicon atom in the substrate showed great effect on the reaction. Acetyltrimethylsilane was a much better substrate for (R)-hydroxynitrile lyase from Prunus japonica than its carbon analogue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号