首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Systematic isolation of the cell constituents of Proteus mirabilis RMS–203 was performed to find out localization of antitumor principle only in the lipopolysaccharide (LPS) layer of the cell wall fraction.

LPS with strong antitumor activity was extracted from P. mirabilis RMS–203 by phenol-water method followed by purification on DEAE-Sephadex A–50 column chromatography.

The main components of purified LPS were galactose, hexosamine, 2-keto-deoxy-octonic acid (KDO), myristic acid, β-hydroxymyristic acid and α,ε-diaminopimelic acid.

The minimal effective dose of LPS against Ehrlich solid carcinoma in mice was 0.1~1.0 μg/mouse. LD50 in mice and pyrogenicity in rabbits were 28 mg/kg and 10?3–10?5 μg/rabbit, respectively.  相似文献   

2.
A biosynthetically double-labelled lipopolysaccharide (LPS) from Salmonella abortus equi was used to study possible in vivo degradation of LPS in rats. The preparation designated rLPS-I was labelled with 3H in the fatty acids and 14C in the sugars. Three days after its intravenous injection the concentration of the two isotopes in the liver was analysed directly by combustion of liver tissue in a sample oxidizer. It was found that compared to the starting LPS, less 3H activity was present than 14C, indicating that partial deacylation had occurred. Reisolation and purification of radioactive material present in the liver revealed that all radioactivity was present in a macromolecular form. Analysis showed that the ratio of the two isotopes was identical to that determined in the starting liver tissue. To exclude the possibility that the loss of 3H might have been due to isotopic dilution the above experiments were repeated with a second LPS preparation (rLPS-II) labelled with 14C in the fatty acids and 3H in glucosamine. Isotopic analysis confirmed that here too a lower content of fatty acids in the LPS was present in the liver. A large-scale (20 rats) reisolation of non-radioactive LPS of S. abortus equi from rat livers three days after injection was carried out. Chemical analysis revealed the presence of 3-deoxy-D-manno-octulosonic acid, heptose, galactose, mannose and rhamnose in a molar ratio similar to that of the original LPS. However a significant reduction in the amount of abequose was found. Fatty acid analysis showed a significant reduction in the content of 3-hydroxytetradecanoic, dodecanoic and hexadecanoic acids, while 2-hydroxytetradecanoic acid was virtually absent. Only the relative amount of tetradecanoic acid was comparable to that of the starting LPS. Biological activity tests on the reisolated material showed a reduced antigenic activity. However, pyrogenicity, lethal toxicity, local Shwartzman-inducing properties and Limulus lysate gelating activity were comparable to the starting S. abortus equi LPS.  相似文献   

3.
The lipopolysaccharide (LPS) of Fusobacterium nucleatum JCM 8532 was isolated by hot-phenol water extraction. Most of the LPS was extracted in the phenolic phase and shown to be the smooth-type, whereas the aqueous phase contained mainly rough-type LPS. The chemical composition of the LPS was similar to that reported in other studies, but D -quinovosamine, which may be a major component of O-antigenic polysaccharide, and 3-deoxy-D -manno-2-octulosonic acid (Kdo) were detected for the first time by gas chromatography-mass spectrometry. The biological activities of smooth-type LPS, including limulus activity, lethal toxicity, pyrogenicity, and B lymphocyte mitogenicity, were comparable to those of enterobacterial LPS. Smooth-type LPS inhibited the cell growth and DNA synthesis of adult and fetal human gingival fibroblasts in a dose-dependent manner, suggesting that LPS may play a role in the occurrence of human gingivitis.  相似文献   

4.
Lipid A in lipopolysaccharide (LPS) of Escherichia coli mutant strains was modified by the introduction of myristoyltransferase gene cloned from Klebsiella pneumoniae. When the gene was introduced into the mutant having lipid A containing only 3‐hydroxymyristic acids, it produced lipid A with two additional myristic acids (C14:0). When the same gene was introduced into the mutant with pentaacylated lipid A containing one lauric acid (C12:0), C12:0 was replaced by C14:0. IL‐6‐inducing activity of LPS with modified lipid A structure suggested that C12:0 in lipid A could be replaced by C14:0 without changing the immunostimulating activity.  相似文献   

5.
Pseudomonas diminuta LPS with a new endotoxic lipid A structure   总被引:5,自引:0,他引:5  
Lipid A that contains mainly 2,3-diamino-2,3-dideoxy-D-glucose, phosphate and fatty acids in the molar ratio 2:1:5-6 was found in Pseudomonas diminuta lipopolysaccharide. The lipid A was considered to have a diamino-sugar disaccharide structure that carries a nonglycosidic phosphomonoester group and amide-bound acyloxyacyl and 3-hydroxy fatty acyl groups. The lipopolysaccharide exhibited endotoxic activities including lethal toxicity, pyrogenicity, local Shwartzman activity, body weight-decreasing toxicity and Limulus activity. The free lipid A was also endotoxic.  相似文献   

6.
Endotoxic glycolipid extracted from the heptose-less mutant of Salmonella typhimurium was treated with alkali and acid reagents. The glycolipid freed of all O-ester linked fatty acids by hydroxylamine had lost tumor regression activity and toxicity, whereas a partial removal of O-ester linked fatty acids by mild alkali did not impair with these activities. The glycolipid retained both activities after removal of 2-keto-3-deoxyotonate by sodium acetate (pH 4.5) but was rendered nontoxic while retaining antitumor activity when hydrolyzed by 0.1N HCl whereby 2-keto-3-deoxyoctonate and glycosidic phosphate was split off the glycolipid molecule. Nontoxic and tumor regressive fractions were separated by means of preparative thin layer chromatography of glycolipid hydrolyzed by mild acid. Thus, it was concluded that glycosidic bound phosphate and at least a portion of fatty acids of the lipid A moiety were essential for toxicity, but that this phosphate is not essential for tumor regression activity.  相似文献   

7.
Two batches each of diphtheria-tetanus-acellular pertussis vaccine (DTaP) and that combined with inactivated polio vaccine purchased from foreign markets were tested by mouse body weight decreasing (BWD) toxicity test and Limulus amaebocyte lysate (LAL) test. Three out of the four imported vaccine batches showed the levels of BWD toxicity even comparable to that of DT-whole cell pertussis vaccine. BWD toxicity test is based on endotoxin dose-dependent weight loss of mice and has been used for controlling endotoxin in DTaP. Although of the strong BWD toxicity of the imported vaccines, there was no marked difference in LAL test results between the imported vaccines and Japanese DTaP. However, one imported DTaP batch showed very strong interference with LAL activity of spiked lipopolysaccharide (LPS). The batch interfered not only with LAL activity but also with pyrogenicity and prostaglandin E2 induction activity. However, the pyrogenicity of the spiked LPS could be recovered from the precipitated fraction of the batch by treating with phosphate buffer to suggest the possibility of recovering in vivo toxicity. As an adequate in vitro test method could not be identified for controlling the safety of the interfering batch, an appropriate in vivo test would be required for testing such vaccines.  相似文献   

8.
A lethal role for lipid A in Salmonella infections   总被引:11,自引:3,他引:8  
Salmonella infections in naturally susceptible mice grow rapidly, with death occurring only after bacterial numbers in vivo have reached a high threshold level, commonly called the lethal load. Despite much speculation, no direct evidence has been available to substantiate a role for any candidate bacterial components in causing death. One of the most likely candidates for the lethal toxin in salmonellosis is endotoxin, specifically the lipid A domain of the lipopolysaccharide (LPS) molecule. Consequently, we have constructed a Salmonella mutant with a deletion–insertion in its waaN gene, which encodes the enzyme that catalyses one of the two secondary acylation reactions that complete lipid A biosynthesis. The mutant biosynthesizes a lipid A molecule lacking a single fatty acyl chain and is consequently less able to induce cytokine and inducible nitric oxide synthase (iNOS) responses both in vivo and in vitro. The mutant bacteria appear healthy, are not sensitive to increased growth temperature and synthesize a full-length O-antigen-containing LPS molecule lacking only the expected secondary acyl chain. On intravenous inoculation into susceptible BALB/c mice, wild-type salmonellae grew at the expected rate of approximately 10-fold per day in livers and spleens and caused the death of the infected mice when lethal loads of approximately 108 were attained in these organs. Somewhat unexpectedly, waaN mutant bacteria grew at exactly the same rate as wild-type bacteria in BALB/c mice but, when counts reached 108 per organ, mice infected with mutant bacteria survived. Bacterial growth continued until unprecedentedly high counts of 109 per organ were attained, when approximately 10% of the mice died. Most of the animals carrying these high bacterial loads survived, and the bacteria were slowly cleared from the organs. These experiments provide the first direct evidence that death in a mouse typhoid infection is directly dependent on the toxicity of lipid A and suggest that this may be mediated via pro-inflammatory cytokine and/or iNOS responses.  相似文献   

9.
Biological activities of lipopolysaccharide (LPS) isolated from Vibrio cholerae O139, a new causative agent for recent cholera epidemic in Indian subcontinent, were investigated in comparison with those of LPS from O1 V. cholerae. V. cholerae O139 LPS exerted mitogenic activity, lethal toxicity and Shwartzman reaction to the same extent as those observed for O1 V. cholerae LPS, although these activities except for lethal toxicity were obviously lower than those of Salmonella typhimurium LT-2 LPS used as a reference. It was, therefore, suggested that O139 LPS does not contribute to the high infective and pathogenic potentials of the V. cholerae O139 strain as in the case of O1 V. cholerae.  相似文献   

10.
Glycolipid (GL) was extracted from a heptoseless mutant of Salmonella minnesota by a mixture of phenol, chloroform, and petroleum ether. The GL was subjected to treatment with either acetic anhydride or phthalic anhydride; a portion of the GL was untreated. Both of the chemically treated preparations as well as the parent GL were examined for biological activity in the following systems: mouse lethality assays, rabbit pyrogenicity assays, and rabbit skin assays. The results of these studies indicated that both treated preparations were less toxic in mice than the parent GL. Compared with saline-treated controls, rabbits pretreated with either of the modified preparations exhibited a reduced pyrogenic response to a subsequent challenge dose of the homologous material but no reduction when challenged with the parent GL. Pretreatment with the unaltered GL rendered rabbits tolerant to the homologous material and to some degree to the modified preparations. Rabbits immunized witn any of the three Gl preparations exhibited dermal toxicity responses comparable with those in untreated animals. Based on these findings, it was concluded that treating GL with either phthalic anhydride or acetic anhydride results in a product which is less toxic in mice and less pyrogenic in rabbits than the parent GL, but which also exhibits a loss of ability to render rabbits tolerant to challenge with untreated GL.  相似文献   

11.
A study was made on the differences between Brevibacterium thiogenitalis No. 653 and its oleic acid-requiring mutant D-248 in some physiological characteristics.

The most important difference of the characteristics was found in their intracellular fatty acid contents. Namely, the cellular oleic acid content of D-248 was scarcely affected by biotin but limited by the oleic acid which was added to the medium.

On the other hand, various enzyme activities and rates of oxygen uptake for several organic acids were found to be slightly different between the two strains.

These observations suggest that oleic acid has an important role for the production of l-glutamic acid.

The effect of biotin and oleic acid on the cellular fatty acid contents, and the relation between the cellular fatty acid contents and the productivity of l-glutamic acid were investigated using Brevibacterium thiogenitalis No. 653 and its oleic acid-requiring mutant, D-248.

While the synthesis of palmitic acid in D-248 was stimulated by biotin and competitively reversed by oleic acid added to the culture medium, the level of cellular oleic acid was scarcely affected by biotin but regulated by oleic acid in the medium.

For the productivity of L-glutamic acid, the most important factor was the level of cellular oleic acid, and the effect of cellular palmitic acid was considerably weak. This relation was subjected to a figuration and able to be expressed on the whole as one exponential-like curve. An amount of over 70 per cent of cellular fatty acids was distributed in the phospholipid fraction and its fatty acid composition was almost the same as that of whole cells.  相似文献   

12.
Inositol deficiency caused the abnormalities of permeability of the cell envelope of the inositol exacting yeasts. In the case of Schizosaccharomyces pombe, in which the marked leakage of cellular free-pool fraction was not detected, the uptake activity of glucose or methylglucoside decreased in inositol deficiency, especially in aerobic condition. Investigations on the compositions of lipids and fatty acids showed that the change in fatty acid composition was not so remarkable as that in phosphatides in inositol deficiency. One of the main causes of low transport activity may be due to the change in phosphatides, but not due to that in fatty acids, possibly. Intracellular contents of glucose was not less in inositol deficiency than in sufficiency. These results suggest that inositol deficiency caused the low activity of uptake, which might not be, however, the primary cause of low fermentative activity.

In the case of Saccharomyces cerevisiae Ino mutant A–21–20, the similar results about permeability and lipid analyses were obtained in inositol deficiency.  相似文献   

13.
Lipid components obtained from Salmonella typhosa O-901 endotoxin by acid hydrolysis were separated into neutral, polar-I and polar-II lipid fractions by silica gel column chromatography. These lipids were further separated by silica gel column and/or thin-layer chromatography. The subfractions were analyzed by thin-layer chromatography, gas chromatography and infrared spectrophotometry. Seven subfractions obtained from the neutral lipid fraction contained lauric, myristic, palmitic, 3-OH-myristic acid, artificial products of 3-OH-myristic acid, or a small amount of two unidentified fatty acids. These fatty acids and glucosamine were commonly detected in six subfractions obtained from the polar-I lipid fraction. Fatty acids, glucosamine, and O-phosphorylethanolamine were detected in all of the 13 subfractions obtained from the polar-II lipid fraction. Chick embryo lethal activity, rabbit pyrogenicity and in vitro interferon inducing activity were found in three polar-I lipid subfractions and five polar-II lipid subfractions, but not in neutral lipids. The activities were highest in a polar-II lipid subfraction, which contained smaller amounts of O-phosphorylethanolamine and glucosamine than the other subfractions. However, no particular chemical constituent (s) related to the biological activities could be found. Prolonged acid hydrolysis of the polar-II lipids gave rise to neutral and polar-I lipids. Chemical and biological aspects of the lipid constituents of endotoxin are discussed.  相似文献   

14.
Immunological properties of a low toxicity lipopolysaccharide (BP-LPS) extracted from Bordetella pertussis (Tohama strain) which was reported to have high antitumor activity against murine tumors were examined and compared with those of LPS extracted from other enterobacteria. The activation or stimulation of murine macrophages and lymphocytes by these LPS, including TNF induction, was found to be similar. However, BP-LPS was clearly less active in its stimulation of murine and human neutrophils as estimated by neutrophil-adherence assay and by their TNF production than E. coli LPS. Furthermore, BP-LPS also suppressed the activation of human neutrophils by Escherichia coli LPS. A comparative study with 7 LPS preparations indicated that their toxicity in terms of animal body weight loss correlated with their ability to induce human neutrophil adherence. The inability of BP-LPS to activate neutrophils may thus have some bearing on its low toxicity.  相似文献   

15.
The eftA gene in Bacillus subtilis has been suggested to be involved in the oxidation/reduction reactions during fatty acid metabolism. Interestingly etfA deletion in B. subtilis results in impairment in CaCO3 precipitation on the biofilm. Comparisons between the wild type B. subtilis 168 and its etfA mutant during in vitro CaCO3 crystal precipitation (calcite) revealed changes in phospholipids membrane composition with accumulation of up to 10% of anteiso-C17:0 and 11% iso-C17:0 long fatty acids. Ca2+ nucleation sites such as dipicolinic acid and teichoic acids seem to contribute to the CaCO3 precipitation. etfA mutant strain showed up to 40% less dipicolinic acid accumulation compared with B. subtilis 168, while a B. subtilis mutant impaired in teichoic acids synthesis was unable to precipitate CaCO3. In addition, B. subtilis etfA mutant exhibited acidity production leading to atypical flagella formation and inducing extensive lateral growth on the biofilm when grown on 1.4% agar. From the ecological point of view, this study shows a number of physiological aspects that are involved in CaCO3 organomineralization on biofilms.  相似文献   

16.
Kosenko  L. V.  Zatovskaya  T. V. 《Microbiology》2004,73(3):292-299
A comparative study of the lipopolysaccharides (LPS) isolated from Sinorhizobium meliloti SKHM1-188 and two of its LPS mutants (Tb29 and Ts22) with sharply decreased nodulation competitiveness was conducted. Polyacrylamide gel electrophoresis with sodium dodecyl sulfate revealed two forms of LPS in all three strains: a higher molecular weight LPS1, containing O-polysaccharide (O-PS), and a lower molecular weight LPS2, without O-PS. However, the LPS1 content in mutants was significantly smaller than in the parent strain. The LPS of the strains studied contained glucose, galactose, mannose, xylose, three nonidentified sugars (X 1 (TGlc 0.53), X 2 (TGlc 0.47), and X 3 (TGlc 0.43)), glucosamine, and ethanolamine, while the LPS of S. meliloti SKHM1-188 additionally contained galactosamine, glucuronic and galacturonic acids, and 2-keto-3-deoxyoctulosonic acid (KDO), as well as such fatty acids as 3-OH C14:0, 3-OH C15:0, 3-OH C16:0, 3-OH C18:0, nonidentified hydroxy X (T3-OH C14:0 1.33), C18:0, and unsaturated C18:1 fatty acids. The LPS of both mutants were similar in the component composition but differed from the LPS of the parent strain by lower X 2, X 3, and 3-OH C14:0 contents and higher KDO, C18:0, and hydroxy X contents. The LPS of all the strains were subjected to mild hydrolysis with 1% acetic acid and fractionated on a column with Sephadex G-25. The higher molecular weight fractions (2500–4000 Da) contained a set of sugars typical of intact LPS and, supposedly, corresponded to the LPS polysaccharide portion (PS1). In the lower molecular weight fractions (600–770 Da, PS2), glucose and uronic acids were the major components; galactose, mannose, and X 1 were present in smaller amounts. The PS1/PS2 ratio for the two mutants was significantly lower than for strain SKHM1-188. The data obtained show that the amount of O-PS–containing molecules (LPS1) in the heterogeneous lipopolysaccharide complex of the mutants was smaller than in the SKHM1-188 LPS; this increases the hydrophobicity of the cell surface of the mutant bacteria, which supposedly contributes to their nonspecific adhesion to the roots of the host plant, thus decreasing their nodulation competitiveness.  相似文献   

17.
ABSTRACT

Antibacterial activities against Staphylococcus aureus and Bacillus subtilis were found in an ethanol fraction of tempe, an Indonesian fermented soybean produced using Rhizopus oligosporus. The ethanol fraction contained free fatty acids, monoglycerides, and fatty acid ethyl esters. Among these substances, linoleic acid and α-linolenic acid exhibited antibacterial activities against S. aureus and B. subtilis, whereas 1-monolinolenin and 2-monolinolenin exhibited antibacterial activity against B. subtilis. The other free fatty acids, 1-monoolein, monolinoleins, ethyl linoleate, and ethyl linolenate did not exhibit bactericidal activities. These results revealed that R. oligosporus produced the long-chain polyunsaturated fatty acids and monolinolenins as antibacterial substances against the Gram-positive bacteria during the fungal growth and fermentation of heat-processed soybean.  相似文献   

18.
Delipidation of beef heart electron transport particles with phospholipase A2 has been examined. When the particles were treated with the lipase and subjected to a low bovine serum albumin wash, ATPase activity was unaffected as was the lipid/protein ratio of the particles. However, energisation by ATP/Mg2+ was abolished. Furthermore, unsaturated but not saturated fatty acids discharged the steady-state ATP-driven membrane potential of control samples. When the phospholipase A2 hydrolysis products were removed, inhibition of energy-linked reactions in the lipid-depleted particles was still observed and was interpreted in terms of non-specific leaks in the vesicle membranes, and ‘specific’ leaks through impaired H+-ATPase complexes. ATPase activity was less susceptible to delipidation than energisation but was, nevertheless, strongly inhibited at 50 percent lipid depletion.

Spin label studies indicated a decrease in the fluidity of particle membranes accompanying delipidation. Moreover, the discontinuity seen in Arrhenius plots of ATPase activity was shifted from 17°C (control) to 22°C at 50 percent phospholipid depletion. The data are consistent with a release of unsaturated fatty acids by phospholipase A2 rendering the transport particles both leakier and the membranes less fluid than controls.  相似文献   

19.
The chemical and biological properties of the lipopolysaccharide (LPS) isolated from a marine bacterium, Photobacterium phosphoreum PJ-1, were studied. This LPS consists of 40.6% carbohydrate, 27.3% fatty acid, 0.2% 2-keto-3-deoxyoctonate (KDO) and other components. One characteristic of this LPS is its small amount of KDO, the basic component of the usual LPS. Electrophoresis in sodium dodecylsulfate polyacrylamide gel revealed at least two staining bands for carbohydrates. These bands were continuous and broad, and showed rapid electrophoretic mobility which corresponded closely to the fastest moving band of LPS from Salmonella typhimurium. This LPS preparation had adjuvant activity, lethality for ddY mice, and the ability to gel Limulus amebocyte lysate, and the strength of these activities corresponded closely to those of LPS preparations from Escherichia coli 0111:B4 and S. typhimurium. In the test for lethality of the LPS for ddY mice, the lethal action appeared in two phases depending on the dose used for intravenous (i.v.) injection : the early lethal action appeared within 30 min after injection of 250 μg or less, and the late lethal action occurred gradually after 16 hr at doses of 500 μg or more. The total (both phases) LD50 of this LPS (i.v.) for ddY mice was 265 μg per mouse and in only the late phase it was 500 μg. These results show that in spite of structual differences in regard to KDO content, LPS from P. phosphoreum PJ-1 has some biological properties similar to those of LPS from E. coli 0111:B4 and S. typhimurium but it shows no immunological cross-reaction with other LPS.  相似文献   

20.
As a part of extensive program on microbial utilization of hydrocarbons, lipid components of Candida petrophillum SD-14 grown on n-alkanes and glucose as carbon sources were studied. In any carbon source, cellular fatty acids of the yeast contained palmitic, palmitoleic, stearic, oleic and linoleic acids as major components.

When n-tridecane was fed to the yeast, fatty acids with odd- and even-number of carbon atoms were produced in almost identical quantity. Another yeast, Torulopsis petrophillum SD-77, also gave a very similar fatty acid pattern by n-tridecane substrate. These phenomena indicate the existence of C2 addition and β-oxidation of the fatty acid formed in the yeasts.

In the cases of n-tridecane, n-hexadecane and glucose as substrate, about a half of SD-14’s lipid was phospholipid, which consisted of phosphatidyl ethanolamine and phosphatidyl choline principally. Free alcohol and wax were not detected in any case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号