首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 459 毫秒
1.
In order to clarify the postprandial glucose suppression via alpha-glucosidase (AGH) inhibitory action by natural compounds, flavonoids were examined in this study. Among the flavonoids (luteolin, kaempferol, chrysin, and galangin), luteolin showed the potent maltase inhibitory activity with the IC50 of 2.3 mM, while less inhibitions were observed against sucrase. In addition, the effects of maltase inhibition by flavonoids were observed in the descending order of potency of luteolin > kaempferol > chrysin > galangin. Apparently, the AGH inhibition power greatly increased with the replacement of hydroxyl groups at 3' and 4'-position of the B-ring. However, the inhibitory power of luteolin was poorer than a therapeutic drug (acarbose: IC50; 430 nM). As a result of a single oral administration of maltose or sucrose (2 g/kg) in SD rats, no significant change in blood glucose level with the doses of 100 and 200 mg/kg of luteolin was observed. These findings strongly suggested that luteolin given at less than 200 mg/kg did not possess the ability to suppress the glucose production from carbohydrates through the inhibition of AGH action in the gut.  相似文献   

2.
The suppressive effect on the postprandial blood glucose rise through alpha-glucosidase (AGH) inhibition was investigated in this study in order to clarify an antihyperglycemic function of 6-O-caffeoylsophorose (CS) from diacylated anthocyanin. The administration of CS (100 mg/kg) following maltose (2 g/kg) to Sprague-Dawley rats resulted in the maximal blood glucose level after 30 min being significantly decreased by 11.1% compared to the control. A reduction in the serum insulin secretion was also observed in parallel to the decrease in blood glucose level. No blood glucose change was apparent when sucrose or glucose was ingested, suggesting that the antihyperglycemic effect of CS was achieved by maltase inhibition, rather than by sucrase or glucose transport inhibition. An AGH inhibitory assay demonstrated that the non-competitive maltase inhibition of CS was partly due to acylation by phenolic acid with sugar, the presence of hydroxyl groups in the aromatic ring, and the presence of an unsaturated alkyl chain in the acylated moiety.  相似文献   

3.
A survey of food components with α-glucosidase (AGH) inhibitory activity was conducted to identify a prophylactic effect for diabetes in food. Sardine muscle hydrolyzed by alkaline protease showed potent activity (IC50 = 48.7mg/ml) as well as green and oolong teas (IC50 = 11.1 and 11.3mg/ml, respectively). Furthermore, hydrolyzates prepared by various proteases gave differing AGH inhibitory activity. DEAE-Sephadex chromatography of the alkaline protease hydrolyzate eluted potent AGH inhibitors (IC50 = 15.6mg/ml) with a 50 mm phosphate buffer (pH 7.0) containing 0.3 m NaCl, and their subsequent separation by HPLC in an ODS column showed that there were some inhibitors possessing primary amino groups. This indicates that they would have been high anionic and peptidic compounds.  相似文献   

4.
Tinospora cordifolia, used in anti-diabetic herbal drug preparations, was reported [12] to contain an α-glucosidase inhibitor, characterized as saponarin (apigenin-6-C-glucosyl-7-O-glucoside). The leaf extract had appreciable antioxidant and hydroxyl radical scavenging activities and contained the flavonoid in the range of 32.1 ± 1.5–45.5 ± 3.5 mg/g of dry solid. Saponarin showed mixed competitive inhibition on activities of α-glucosidase and sucrase of different origins. IC50, Ki and ki′ values determined were 48 μM, 8 μM and 19.5 μM respectively for intestinal maltase and 35 μM, 6 μM and 13 μM respectively for intestinal sucrase. When given orally to maltose-fed rat, saponarin showed hypoglycemic activity in the range of 20–80 mg/kg compared to 100–200 mg/kg for acarbose as reported [27].  相似文献   

5.
Liu L  Xie Y  Song Z  Shang S  Chen X 《Molecular bioSystems》2012,8(8):2183-2187
It has been suggested that the increasing glycation in diabetes can influence the ability of plasma proteins to bind to small molecules. Herein, the influence of flavonoids on the glycation of plasma proteins was investigated. After being incubated with glucose at 37 °C, the levels of glycated albumin (HGA) were significantly improved in healthy human plasma proteins (HPP). The inhibitory effects of flavonoids against the formation of advanced glycation products (AGEs) in HPP were determined as: galangin > apigenin > kaempferol ≈ luteolin > myricetin > quercetin. After being combined with 20 μmol L?1 of quercetin for 11 days, the fresh plasma with δ-glucose caused 323.05-32.07% inhibition of HGA formation in type II diabetes plasma proteins (TPP). Luteolin showed weak inhibition of HGA formation in TPP. However, kaempferol, galangin and apigenin hardly inhibited the formation of HGA in TPP. These results showed that more hydroxyl groups on ring B of flavonoids will enhance the inhibitory effects on the HGA formation in TPP.  相似文献   

6.
Catechin and epicatechin are flavan-3-ols, with (+)-catechin (C) and (−)-epicatechin (EC) being the most common optical isomers found in nature. In this study, we found that C and EC showed notable inhibitory activity against a-glucosidase (AGH), and that both inhibition activities reversible and competitive. Additionally, we observed that C and EC quenched the intrinsic fluorescence of AGH through a static quenching mechanism, and that the electrostatic force was the predominant driving factor in the binding reaction. Molecular docking studies indicated that the benzene-ring-4′-hydroxyphenyl construct on flavan-3-ol plays an important role in AGH inhibition, and that the inhibition increases along with increased binding of amino acid residues at this site. Furthermore, C and EC inhibited glucose absorption in everted intestine sleeves in vitro and suppressed increases in postprandial blood glucose levels in vivo. Our results suggest that C and EC are useful to protect against hyperglycemia through inhibiting the activity of a-glucosidase.  相似文献   

7.
The synthesized flavonoid derivatives were examined for their antioxidant, anti‐inflammatory, xanthine oxidase (XO), urease inhibitory activity, and cytotoxicity. Except few, all the flavonoids under this study showed significant antioxidant activity (45.6%–85.5%, 32.6%–70.6%, and 24.9%–65.5% inhibition by DPPH, ferric reducing/antioxidant power, and oxygen radical absorption capacity assays) with promising TNF‐α inhibitory activity (42%–73% at 10 μM) and IL‐6 inhibitory activity (54%–81% at 10 μM) compared with that of control dexamethasone. The flavonoids luteolin, apigenin, diosmetin, chrysin, O3?, O7‐dihexyl diosmetin, O4?, O7‐dihexyl apigenin, and O7‐hexyl chrysin, showed an inhibition with IC50 values (4.5‐8.1 μg/mL), more than allopurinol (8.5 μg/mL) at 5 μM against XO and showing more than 50% inhibition at a final concentration (5 mM) with an IC50 value of ranging from 4.8 to 7.2 (μg/mL) in comparison with the positive control thiourea (5.8 μg/mL) for urease inhibition. Thus, the flavonoid derivatives may be considered as potential antioxidant and antigout agents.  相似文献   

8.
Dietary polyphenols have been shown to inhibit α-glucosidase, an enzyme target of some antidiabetic drugs. Resveratrol, a polyphenol found in grapes and wine, has been reported to inhibit the activity of yeast α-glucosidase. This triggered our interest to synthesize analogs and determine their effect on mammalian α-glucosidase activity. Using either sucrose or maltose as substrate resveratrol, piceatannol and 3′-hydroxypterostilbene showed strong inhibition of mammalian α-glucosidase activity; pinostilbene, cis-desoxyrhapontigenin and trans-desoxyrhapontigenin had moderate inhibition. Compared to acarbose (IC50 3–13 μg/ml), piceatannol and resveratrol inhibited mammalian α-glucosidase to a lesser extent (IC50 14–84 and 111–120 μg/ml, respectively). 3′-Hydroxypterostilbene (IC50 105–302 μg/ml) was 23–35-fold less potent than acarbose. We investigated the effect of piceatannol and resveratrol on postprandial blood glucose response in high-fat-fed C57Bl/6 mice. Animals administered resveratrol (30 mg/kg body weight [BW]) or piceatannol (14 mg/kg BW) 60 min prior to sucrose or starch loading had a delayed absorption of carbohydrates, resulting in significant lowering of postprandial blood glucose concentrations, similar to the antidiabetic drug acarbose, while no significant effect was observed with the glucose-loaded animals. Our studies demonstrate that the dietary polyphenols resveratrol and piceatannol lower postprandial hyperglycemia and indicate that inhibition of intestinal α-glucosidase activity may be a potential mechanism contributing to their antidiabetic property.  相似文献   

9.
In our on‐going pursuit to discover natural products and natural product‐based compounds to control the bacterial species Flavobacterium columnare, which causes columnaris disease in channel catfish (Ictalurus punctatus), we synthesized flavone and chalcone analogs, and evaluated these compounds, along with flavonoids from natural sources, for their antibacterial activities against two isolates of F. columnare (ALM‐00‐173 and BioMed) using a rapid bioassay. The flavonoids chrysin ( 1a ), 5,7‐dihydroxy‐4′‐methoxyflavone ( 11 ), isorhamnetin ( 26 ), luteolin ( 27 ), and biochanin A ( 29 ), and chalcone derivative 8b showed strong antibacterial activities against F. columnare ALM‐00‐173 based on minimum inhibition concentration (MIC) results. Flavonoids 1a, 8, 11, 13 (5,4′‐dihydroxy‐7‐methoxyflavone), 26 , and 29 exhibited strong antibacterial activities against F. columnare BioMed based upon MIC results. The 24‐h 50% inhibition concentration (IC50) results revealed that 27 and 29 were the most active compounds against F. columnare ALM‐00‐173 (IC50 of 7.5 and 8.5 mg/l, resp.), while 26 and 29 were the most toxic compound against F. columnare BioMed (IC50 of 9.2 and 3.5 mg/l, resp.). These IC50 results were lower than those obtained for wogonin against F. columnare ALM‐00‐173 and F. columnare BioMed (28.4 and 5.4 mg/l, resp.). However, based on MIC results, none of the compounds evaluated in this study were as active as wogonin (MIC 0.3 mg/l for each F. columnare isolate). Further modification of the wogonin structure to enhance antibacterial is of interest.  相似文献   

10.
Bacterial efflux pumps are active transport proteins responsible for resistance to selected biocides and antibiotics. It has been shown that production of efflux pumps is up-regulated in a number of highly pathogenic bacteria, including methicillin resistant Staphylococcus aureus. Thus, the identification of new bacterial efflux pump inhibitors is a topic of great interest. Existing assays to evaluate efflux pump inhibitory activity rely on fluorescence by an efflux pump substrate. When employing these assays to evaluate efflux pump inhibitory activity of plant extracts and some purified compounds, we observed severe optical interference that gave rise to false negative results. To circumvent this problem, a new mass spectrometry-based method was developed for the quantitative measurement of bacterial efflux pump inhibition. The assay was employed to evaluate efflux pump inhibitory activity of a crude extract of the botanical Hydrastis Canadensis, and to compare the efflux pump inhibitory activity of several pure flavonoids. The flavonoid quercetin, which appeared to be completely inactive with a fluorescence-based method, showed an IC50 value of 75 μg/mL with the new method. The other flavonoids evaluated (apigenin, kaempferol, rhamnetin, luteolin, myricetin), were also active, with IC50 values ranging from 19 μg/mL to 75 μg/mL. The assay described herein could be useful in future screening efforts to identify efflux pump inhibitors, particularly in situations where optical interference precludes the application of methods that rely on fluorescence.  相似文献   

11.
Mushroom tyrosinase (EC 1.14.18.1) is a copper containing oxidase that catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones, and then forms brown or black pigments. In the present study, the effects of some flavonoids on the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) have been studied. The results show that flavonoids can lead to reversible inhibition of the enzyme. A kinetic analysis showed that the flavonols are competitive inhibitors, whereas luteolin is an uncompetitive inhibitor. The rank order of inhibition was: quercetin > galangin > morin; fisetin > 3,7,4"-trihydroxyflavone; luteolin > apigenin > chrysin.  相似文献   

12.
(2S,3R,4R,5S,6R)-2-Aryl-5,5-difluoro-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4-diols and (2S,3R,4R,5S,6R)-2-aryl-5-fluoro-5-methyl-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4-diols were discovered as dual inhibitors of sodium glucose co-transporter proteins (e.g. SGLT1 and SGLT2) through rational drug design, efficient synthesis, and in vitro and in vivo evaluation. Compound 6g demonstrated potent dual inhibitory activities (IC50 = 96 nM for SGLT1 and IC50 = 1.3 nM for SGLT2). It showed robust inhibition of blood glucose excursion in an oral glucose tolerance test (OGTT) in Sprague Dawley (SD) rats when dosed at both 1 mg/kg and 10 mg/kg orally. It also demonstrated postprandial glucose control in db/db mice when dosed orally at 10 mg/kg.  相似文献   

13.
Various dietary flavonoids were evaluated in vitro for their inhibitory effect on xanthine oxidase, which has been implicated in oxidative injury to tissue by ischemia-reperfusion. Xanthine oxidase activity was determined by directly measuring uric acid formation by HPLC. The structure-activity relationship revealed that the planar flavones and flavonols with a 7-hydroxyl group such as chrysin, luteolin, kaempferol, quercetin, myricetin, and isorhamnetin inhibited xanthine oxidase activity at low concentrations (IC50 values from 0.40 to 5.02 μM) in a mixed-type mode, while the nonplanar flavonoids, isoflavones and anthocyanidins were less inhibitory. These results suggest that certain flavonoids might suppress in vivo the formation of active oxygen species and urate by xanthine oxidase.  相似文献   

14.
The 70% methanol extract from ezoishige (Pelvetia babingtonii de Toni) inhibited the rat-intestinal α-glucosidase, sucrase and maltase activities, with IC50 values of 2.24 and 2.84 mg/ml. Sucrose was orally administered with or without the extract to rats at 1000 mg/kg. The postprandial elevation in the blood glucose level at 15 and 30 min after the administration of sucrose with the extract was significantly suppressed when compared with the control. These results suggest that the extract from ezoishige has potent α-glucosidase inhibitors and would be effective for suppressing postprandial hyperglycemia.  相似文献   

15.
Previous studies have demonstrated that certain flavonoids can have an inhibitory effect on angiotensin-converting enzyme (ACE) activity, which plays a key role in the regulation of arterial blood pressure. In the present study, 17 flavonoids belonging to five structural subtypes were evaluated in vitro for their ability to inhibit ACE in order to establish the structural basis of their bioactivity. The ACE inhibitory (ACEI) activity of these 17 flavonoids was determined by fluorimetric method at two concentrations (500 µM and 100 µM). Their inhibitory potencies ranged from 17 to 95% at 500 µM and from 0 to 57% at 100 µM. In both cases, the highest ACEI activity was obtained for luteolin. Following the determination of ACEI activity, the flavonoids with higher ACEI activity (i.e., ACEI >60% at 500 µM) were selected for further IC50 determination. The IC50 values for luteolin, quercetin, rutin, kaempferol, rhoifolin and apigenin K were 23, 43, 64, 178, 183 and 196 µM, respectively. Our results suggest that flavonoids are an excellent source of functional antihypertensive products. Furthermore, our structure-activity relationship studies show that the combination of sub-structures on the flavonoid skeleton that increase ACEI activity is made up of the following elements: (a) the catechol group in the B-ring, (b) the double bond between C2 and C3 at the C-ring, and (c) the cetone group in C4 at the C-ring. Protein-ligand docking studies are used to understand the molecular basis for these results.  相似文献   

16.
Abstract

Galangin is an antioxidant flavonol present in high concentrations in the rhizome of Alpinia galanga. We investigated the effect of galangin on whole-body insulin resistance and kidney oxidative stress in a fructose-induced rat model of metabolic syndrome. Male albino Wistar rats were divided into 6 groups containing six animals each. Groups I and VI received a starch-based control diet, while groups II, III, IV and V were fed a high fructose diet (60 g/100 g). Groups III, IV and V additionally received galangin (50, 100 and 200 μg/kg body weight, respectively) while group VI received 200 μg galangin/kg body weight. At the end of 60 days, fructose-fed rats exhibited insulin resistance, increased levels of peroxidation end products and diminished antioxidant status. galangin, dose-dependently normalized blood glucose and insulin levels. The minimum effective dose was 100 μg galangin/kg body weight. At this dose, galangin also prevented the development of insulin resistance and the exaggerated the response to oral glucose challenge. The oxidant–antioxidant balance was maintained by galangin. Micro-albuminuria and tubular and glomerular changes observed in fructose-treated rats were significantly prevented by galangin (100 μg/kg body weight). These findings imply that galangin potentiates insulin sensitivity and antioxidant capacity and reduces renal damage in this dietary model of metabolic syndrome.  相似文献   

17.
The leaves of the Japanese Alnus sieboldiana have been extracted with n-hexane and then with methanol. A bioactivity-guided approach based on MTT assay for growth inhibition and quantitative real-time PCR for TNF-α inhibitory activity was taken to identify the active compounds in EtOAc soluble fraction of the methanol extract. From this active fraction, seven compounds have been isolated and four compounds (pinosylvin, galangin, quercetin and methyl gallate) have been examined for their dose-response effect on the viability of A549 cells and on TNF-α inhibitory activity. Based on MTT assay, all of the four examined compounds inhibit growth of human lung cancer cells. Among four tested compounds only galangin (3,5,7-trihydroxyflavone) significantly inhibited TNF-α gene expression in A549 cells (IC50 = 94 μM). Taken together, this finding suggests that galangin may be useful in cancer prevention.  相似文献   

18.
A series of N-substituted 1-aminomethyl-β-d-glucopyranoside derivatives was prepared. These novel synthetic compounds were assessed in vitro for inhibitory activity against yeast α-glucosidase and both rat intestinal α-glucosidases maltase and sucrase. Most of the compounds displayed α-glucosidase inhibitory activity, with IC50 values covering the wide range from 2.3 μM to 2.0 mM. Compounds 19a (IC50 = 2.3 μM) and 19b (IC50 = 5.6 μM) were identified as the most potent inhibitors for yeast α-glucosidase, while compounds 16 (IC50 = 7.7 and 15.6 μM) and 19e (IC50 = 5.1 and 10.4 μM) were the strongest inhibitors of rat intestinal maltase and sucrase. Analysis of the kinetics of enzyme inhibition indicated that 19e inhibited maltase and sucrase in a competitive manner. The results suggest that the aminomethyl-β-d-glucopyranoside moiety can mimic the substrates of α-glucosidase in the enzyme catalytic site, leading to competitive enzyme inhibition. Moreover, the nature of the N-substituent has considerable influence on inhibitory potency.  相似文献   

19.
Kim KY  Nam KA  Kurihara H  Kim SM 《Phytochemistry》2008,69(16):2820-2825
Diabetes mellitus is a most serious and chronic disease whose incidence rates are increasing with incidences of obesity and aging of the general population over the world. One therapeutic approach for decreasing postprandial hyperglycemia is to retard absorption of glucose by inhibition of α-glucosidase. Two bromophenols, 2,4,6-tribromophenol and 2,4-dibromophenol, were purified from the red alga Grateloupia elliptica. IC50 values of 2,4,6-tribromophenol and 2,4-dibromophenol were 60.3 and 110.4 μM against Saccharomyces cerevisiae α-glucosidase, and 130.3 and 230.3 μM against Bacillus stearothermophilus α-glucosidase, respectively. In addition, both mildly inhibited rat-intestinal sucrase (IC50 of 4.2 and 3.6 mM) and rat-intestinal maltase (IC50 of 5.0 and 4.8 mM). Therefore, bromophenols of G. elliptica have potential as natural nutraceuticals to prevent diabetes mellitus because of their high α-glucosidase inhibitory activity.  相似文献   

20.
Following an in vitro bioactivity‐guided fractionation procedure, 14 compounds including eight flavonoids and six phenylpropanoids were isolated and identified from the AcOEt fraction of Clinopodium chinense (Benth .) O. Kuntze . All constituents were tested for α‐glucosidase and high glucose‐induced injury in human umbilical vein endothelial cells (HUVECs) inhibitory activities. All constituents exhibited varying degrees α‐glucosidase inhibitory activity and protective activity on HUVECs. Among them, luteolin ( 2 ), eriodictyol ( 5 ), ethyl rosmarinate ( 13 ), and clinopodic acids B ( 14 ) were proved to be potent α‐glucosidase inhibitors with IC50 value ranging from 0.6 to 2.0 μm . Additionally, luteolin ( 2 ), naringenin ( 4 ), eriodictyol ( 5 ), ethyl (2R)‐3‐(3, 4‐dihydroxyphenyl)‐2‐hydroxypropanate ( 9 ), caffeic acid ( 11 ), ethyl rosmarinate ( 13 ), and clinopodic acids B ( 14 ) significantly ameliorate HUVECs injury induced by high glucose with an approximate EC50 value of 3 – 36 μm . These results suggest that the 14 bioactive constituents were responsible for hypoglycemic and protective vascular endothelium effect of C. chinense (Benth .) O. Kuntze and their structure–activity relationship was also analyzed briefly. Eriodictyol, luteolin, ethyl rosmarinate, and clinopodic acids B were the potential lead compounds of antidiabetic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号