首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An l-glutamic acid (l-GA)-forming bacterium. Microbacterium ammoniaphium was cultured in the molasses medium with or without poiyoxyethylene fatty acid esters to obtain l-GA-accumulating cells or non-accumulating cells, respectively.

Then protoplast-like bodies (PLB) were prepared from each group of cells by reacting them with egg white lysozyme.

l-GA-accumulating reaction by the PLB was carried out under high and low osmotic pressures.

From the results of the experiment, it was shown that the difference in the ability of l-GA accumulation between l-GA-accumulating cells and non-accumulating cells was attributed mainly to the difference in the nature of the cell membrane.

Further, the relationship between the molar ratio of saturated fatty acids/unsaturated fatty acids which was reported previously and the nature of the membrane was discussed.

The lipid composition of the cell membrane from Microbacterium ammoniaphilum was determined by thin-layer and column chromatographies to make clear the relation between the extracellular accumulation of l-glutamic acid and the lipid in the cell membrane. When polyoxyethylene fatty acid ester was added to the beet medium and a large amount of l-glutamic acid was accumulated, the increase of the saturated fatty acid (C16, C18) in the neutural lipid fraction and the decreases of the phospholipid fraction and the unsaturated fatty acid (C181=) in the neutral lipid fraction were recognized.  相似文献   

2.
The relation between oleate and biotin to the extracellular accumulation of l-glutamate in Microbacterium ammoniaphilum was studied. And it was suggested that oleate was the essential constituent for the bacterial cell structure, and, at the same time, it participated in the cellular permeability of l-glutamate. On the other hand, biotin was recognized to play a role on the synthesis of cellular fatty acid, mainly oleate and palmitate. Through the discussion above mentioned, the reason was made clear that biotin was not necessary for the bacterial growth or the extracellular accumulation of l-glutamate, if oleate had been added.  相似文献   

3.
When an l-Glutamic acid (l-GA)-forming bacterium, Microbacterium ammoniaphilum, was cultured in the molasses medium with the addition of penicillin to accumulate large quantity of l-GA extracellularly, no significant differences were observed in the phospholipid quantity and the fatty acid composition which were found between the l-GA-accumulating cells grown either in the molasses medium with addition of polyoxyethylene fatty acid ester (POEFE) or in the glucose medium with the addition of biotin.

Moreover, it was shown that, in the molasses-POEFE system, the amount of l-GA accumulated was nearly constant, independent of the extracellular osmotic pressure caused by the presence of NaNO3 or β-alanine, while, in the molasses-penicillin system, the amount varied inversely to the osmotic pressure.

From these results, it is assumed that either chemical or mechanical process can eliminate the permeability barrier in the cell membrane, thus allowing the extracellular accumulation by l-GA-forming bacteria.  相似文献   

4.
Microorganisms which require oleic acid for the formation of antibiotics were screened. Streptomyces sp. No. 362, one of the selected organisms, produced antimicrobial substances only when oleic acid, palmitic acid or the high concentration of l-glutamic acid (or l-glutamine) was supplemented to the medium. The cellular fatty acid composition was changed by the supplement of these fatty acids, but not by l-glutamic acid (or l-glutamine). Antibiotic-producing cells had about 4 to 10 times larger amino acid pools, especially l-glutamic acid pool, and hexosamine pools. The ability for l-glutamate uptake of cells grown in the oleic or palmitic acid supplemented medium was markedly enhanced and the efflux of the accumulated l-glutamate was reduced. The antibiotic produced by this strain was identified as one of the streptothricin-group antibiotics and the role of these additives in the antibiotic formation is discussed.  相似文献   

5.
Neutral sugar composition of cell walls of suspension-cultured tobacco cells was examined with the advance of culture age by an anion-exchange chromatography. Isolated cell walls gave on hydrolysis the following sugars: 2% of l-rhamnose, 6% of d-mannose, 26% of l-arabinose, 13% of d-galactose, 8% of d-xylose and 47% of d-glucose as neutral sugars. Little changes in composition of cell wall polysaccharides were recognized with the advance of culture age. Sugar composition of the extra-cellular polysaccharides was similar to that of hemicellulose fraction from cell walls. Pectinic acid gave on hydrolysis 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, d-galacturonic acid and its oligosaccharides.  相似文献   

6.
The effects on the polymorphic crystallization of l-glutamic acid were examined of many substances including amino acids, inorganic salts, surface active agents, and sodium salt or hydrochloride of l-glutamic acid, when contained in the mother liquor.

The co-existence of amino acids, especially of l-aspartic acid, l-phenylalanine, l-tyrosine, l-lcucine and l-cystine contributed to the crystallization of l-glutamic acid in α-form, and these amino acid showed an inhibitory action on the transition of α-crystals as the solid phase in the aqueous solution, to β-crystals.

In the presence of a large amount of l-glutamate or the hydrochloride at the time of nucleation of l-glutamic acid, mostly β-crystals appeared even in the presence of the amino acids named above.  相似文献   

7.
A specific regulatory effect of copper ions on the microbiological synthesis of l-glutamate from acetate was found. The minimal concentration of copper ions necessary for the maximal production of l-glutamate was about 0.025 µg/ml at which the yield of l-glutamate was four times greater than that in the absence of copper ions. This effect of copper was demonstrated only when acetate was the substrate; it was not observed when the substrate was glucose ethanol, lactate or n-paraffin.

The physiological features of the l-glutamate production from acetate were examined in the presence or absence of copper ions. The most striking features of the culture without added copper ions were the increase in QO2 and NADH oxidase and the marked reduction of succinate oxidase accompanied with the reduction of l-glutamate formation. In addition, the regulation of l-glutamate synthesis by copper ions proved to have no relation to the wellknown regulatory factor, cell permeability. These facts suggest that the l-glutamate biosynthesis from acetate is regulated through unknown factors related to the respiratory activities.  相似文献   

8.
As already reported, Corynebacterium hydrocarboclastus S10B1 was able to accumulate a good deal of l-glutamate in a thiamine-deficient medium at the sole expense of n-alkanes, but unable to form l-glutamate in a thiamine-sufficient medium though an abundant cell growth was observed.

α-Ketoglutaric acid and dl-alanine were found to be produced in the same thiamine-deficient medium in which l-glutamate was accumulated. Both products formed from n-tetradecane by this organism were isolated from culture broth, purified and identified. The optimum concentration of thiamine in the culture medium was 3 to 5 µg per liter for their production. The maximum yields of α-ketoglutaric acid and dl-alanine reached 16 g and 1.5 g per liter in the calcium carbonate-added medium, respectively. However, the addition of more than 30 μg per liter of thiamine extremely repressed their accumulation.  相似文献   

9.
Branched chain amino acid aminotransferase was partially purified from Pseudomonas sp. by ammonium sulfate fractionation, aminohexyl-agarose and Bio-Gel A-0.5 m column chromatography.

This enzyme showed different substrate specificity from those of other origins, namely lower reactivity for l-isoleucine and higher reactivity for l-methionine.

Km values at pH 8.0 were calculated to be 0.3 mm for l-leucine, 0.3 mm for α-ketoglutarate, 1.1 mm for α-ketoisocaproate and 3.2 mm for l-glutamate.

This enzyme was activated with β-mercaptoethanol, and this activated enzyme had different kinetic properties from unactivated enzyme, namely, Km values at pH 8.0 were calculated to be 1.2 mm for l-leucine, 0.3 mm for α-ketoglutarate.

Isocaproic acid which is the substrate analog of l-leucine was competitive inhibitor for pyridoxal form of unactivated and activated enzymes, and inhibitor constants were estimated to be 6 mm and 14 mm, respectively.  相似文献   

10.
Brevibacterium flavum No. 2247 was found to grow with l-glutamate as the sole carbon and nitrogen source on an agar-plate medium when high concentrations of l-glutamate, FeSO4 and biotin were added to the medium. It grew on l-glutamate in liquid medium only when yeast extract or high concentrations of FeSO4 and glucose or organic acids of the tricarboxylic acid cycle were added to the medium. The growth on l-glutamate in liquid medium was also stimulated by high concentrations of l-glutamate, biotin and MgSO4, and inhibited by a high concentration of (NH4)2SO4.

Aspartate aminotransferase (TA)- and α-ketoglutarate dehydrogenase (KD)-defective mutants did not grow on l-glutamate, and glutamate-utilizing revertants derived from these mutants recovered TA and KD activity, respectively, whereas glutamate dehydrogenase (GD)-defective mutants grew on l-glutamate. Washed cells of strain No. 2247 grown on glutamate decomposed the amino acid, whereas those grown on glucose did not. The degradation was observed only under aerobic conditions. The former cells showed higher KD, succinate dehydrogenase and fumarase activities than the latter cells. Of 75 mutants which did not grow on glutamate but grew on succinate, three strains lacked KD but showed the same glutamate productivity as the parent strain. Four other strains with normal KD levels showed higher glutamate productivity than the parent.  相似文献   

11.
Syntheses of various γ-glutamylpeptides were examined taking use of the highly purified γ-glutamylcysteine synthetase from Proteus mirabilis. The accumulation of each peptide was measured after long time incubation, and good formation was observed in the synthesis of peptides of following amino acids, l-cysteine, l-α-aminobutyrate, l-serine, l-homoserine, glycine, l-alanine, l-norvaline, l-lysine, l-threonine, taurine and l-valine. Peptide syntheses were confirmed by analyses of the component amino acids, after hydrolysis of the peptides.

The structure of the glutamylpeptides, especially the peptide-linkage at the γ-carbonyl residue of l-glutamate, was determined by mass spectrometry of the N-trifluoroacetyl methylester derivatives of the glutamylpeptides. Enzymatic synthesis of γ-glutamyl-l-α-aminobutyrate was also confirmed by PMR spectrometry in the comparison with chemically synthesized compound.  相似文献   

12.
Abstract

l-6-Hydroxynorleucine was synthesized from 2-keto-6-hydroxyhexanoic acid using branched-chain aminotransferase from Escherichia coli with l-glutamate as an amino donor. Since the branched-chain aminotransferase was severely inhibited by 2-ketoglutarate, the branched-chain aminotransferase reaction was coupled with aspartate aminotransferase and pyruvate decarboxylase. Aspartate aminotransferase converted the inhibitory 2-ketoglutarate back to l-glutamate by using l-aspartate as an amino donor. On the other hand, pyruvate decarboxylase further shifted the reaction equilibrium towards l-6-hydroxynorleucine through decarboxylation of pyruvate to acetaldehyde. The concerted action of the three enzymes significantly enhanced the yield compared to that of branched-chain aminotransferase alone. In the coupled reaction, 90.2 mM l-6-hydroxynorleucine (> 99% ee) was produced from 100 mM 2-keto-6-hydroxyhexanoic acid, whereas in a single branched-chain aminotransferase reaction only 22.5 mM l-6-hydroxynorleucine (> 99% ee) was produced.  相似文献   

13.
Structure of a sugar lipid produced by an oleic acid-requiring mutant of Brevibacterium thiogenitalis was studied and established as (I).

Relation between biotin and oleic acid was studied using a biotin-requiring organism accumulating l-glutamic acid and its blocked mutants lacking the biosynthetic system of biotin or/and oleic acid. The results support the following considerations. Biotin is not formed from oleic acid and does not substantially affect the growth of l-glutamic acid-accumulating bacteria and their productivity of l-glutamic acid.

Consequently, biotin serves only for the synthesis of fatty acids in the present organisms. The essential factor for their growth and metabolism is an unsaturated fatty acid like oleic acid and not biotin. And also, saturated fatty acids have substantially no relation with their growth and metabolism like accumulation of l-glutamic acid.  相似文献   

14.
In this study, the mechanism of the extracellular accumulation of l-glutamic acid by the glycerol auxotroph was partially clarified. Whenever Corynebacterium alkanolyticum GL–21 (glycerol auxotroph) accumulated a large amount of l-glutamic acid in the fermentation broth, the content of its cellular phospholipids was not more than 50% of that of C. alkanolyticum No. 314 (prototroph).

Moreover, biotin, oleic acid or thiamine had no influence on the cellular phospholipid content of the auxotroph.

Under limited supply of glycerol, the efflux of l-glutamic acid in the auxotroph was extremely enhanced, but its enzyme activities participating in l-glutamic acid biosynthesis remained at the same level as those of the prototroph.

From the results, it is considered that the regulation of phospholipid content gave rise to the destruction of the permeability barrier to l-glutamic acid in the cell membrane.  相似文献   

15.
Effect of oxygen tension on l-lysine, l-threonine and l-isoleucine accumulation was investigated. Sufficient supply of oxygen to satisfy the cell’s oxygen demand was essential for the maximum production in each fermentation. The dissolved oxygen level must be controlled at greater than 0.01 atm in every fermentation, and the optimum redox potentials of culture media were above ?170 mV in l-lysine and l-threonine and above ?180 mV in l-isoleucine fermentations. The maximum concentrations of the products were 45.5 mg/ml for l-lysine, 10.3 mg/ml for l-threonine and 15.1 mg/ml for l-isoleucine. The degree of the inhibition due to oxygen limitation was slight in the fermentative production of l-lysine, l-threonine and l-isoleucine, whose biosynthesis is initiated with l-aspartic acid, in contrast to the accumulation of l-proline, l-glutamine and l-arginine, which is biosynthesized by way of l-glutamic acid.  相似文献   

16.
l-Sorbose metabolism in Pseudomonas aeruginosa IFO 3898 was studied. When the strain was cultivated in l-sorbose medium, l-idonic and 2-keto-l-gulonic acids were detected in the culture broth.

From the results on the metabolism of various sugars and sugar acids with the cell suspension and the metabolites accumulated, the following pathway was proposed for the l-sorbose metabolism in Ps. aeruginosa IFO 3898.

l-Sorbose → l-idose → l-idonic acid → 2-keto-l-gulonic acid.  相似文献   

17.
l-Leucine-pyruvate and l-leucine-α-ketoglutarate(α-KGA) transaminases were separated by DEAE-cellulose column chromatography and partially purified to 200- and 50-fold, respectively, from the cell-free extract of Acetobacter suboxydans (Gluconobacter suboxydans IFO 3172). The optimum pH range of the former was 5.0~5.5 and that of the latter was 8.5~9.0. l-Leucine, l-citrulline, and l-methionine were the most effective amino donors for the l-leucine-pyruvate transaminase. Basic amino acids as well as aromatic amino acids were able to be amino donors for the transamination with pyruvate. α-KGA was effective as an amino acceptor for this enzyme. The l-leucine-α-KGA transaminase had the typical properties of the branched-chain amino acid transaminase in its substrate specificity.

The reaction products of the transaminations were identified. l-Alanine was formed from pyruvate and l-glutamate from α-KGA. α-Keto acids formed from various amino acids by the l-leucine-pyruvate transaminase were also identified.  相似文献   

18.
The excellent l-leucine producing mutant No. 218, derived from a biotin requiring glutamic acid producing strain, is methionine and isoleucine auxotrophic. A suboptimum growth condition made by adding a limiting amount of isoleucine was necessary for the maximum production of l-leucine. On the other hand, methionine was indifferent to the productivity if sufficiently supplied for growth.

Biotin of more than 50 μg/liter caused the accumulation of l-leucine; less than 50 μg/liter, however, gave a drastic change in accumulation pattern from l-leucine to l-glutamic acid. Strain No. 218 produced 28 mg/ml of l-leucine after 72 hr cultivation when 13 % glucose was supplied as a carbon source, thus giving the yield of 21.6%.

Effects on l-leucine production of concentrations of inorganic salts, pH, temperature and aeration were also investigated.  相似文献   

19.
Growth of various microorganisms in media containing high concentrations of glycine or d-amino acids was examined. Susceptibilities to glycine or d-amino acids differed among microorganisms, and the differences in susceptibility have no direct relation with Gram staining, morphological forms, and aerobic or anaerobic nature of the organisms. Certain glycine-resistant bacteria tested, which included Bacillus cereus, Staphylococcus aureus and Serratia marcescens, exhibited relatively high oxidative activities towards glycine. The inhibition of the growth of Escherichia coli by either glycine or d-amino acids, which included d-threonine, d-alanine and d-lysine, was reversed by l-alanine, partialy by l-serine, and not by l-lysine or l-threonine. These results suggest that the growth inhibition of microorganisms by d-amino acids was similar to that by glycine. The incorporation of l-alanine into E. coli cells which were preincubated with glycine was less than those of preincubated without glycine. Particularly, the incorporation into the cell wall fraction was most susceptible to glycine. An additive effect of penicillin and glycine was observed in the inhibition of cell wall biosynthesis as determined by the intracellular accumulation of N-acetylamino sugar compounds.  相似文献   

20.
The regulatory mechanisms in branched-chain amino acid synthesis were compared between 2-thiazolealanine (2-TA) resistant l-leucine and l-valine producing mutants and the 2-TA sensitive original strains of Brevibacterium lactofermentum 2256.

In the original strains, sensitive to 2-TA, α-isopropylmalate (IPM) synthetase, the initial enzyme specific for l-leucine synthesis, is sensitive to feedback inhibition and to repression by l-leucine, and α-acetohydroxy acid (AHA) synthetase, the common initial enzyme for synthesis of l-isoleucine, l-valine as well as l-leucine, is sensitive to feedback inhibition by each one of these amino acids, and to repression by them all. In strain No. 218, a typical l-leucine producer resistant to 2-TA, IPM synthetase was found to be markedly desensitized and derepressed, and AHA synthetase remained unaltered. On the contrary, in strain No. 333, l-valine producer resistant to 2-TA, AHA synthetase was found to be desensitized and partially derepressed, and IPM synthetase remained unaltered.

The genetic alteration of these regulatory mechanisms was discussed in connection with the accumulation pattern of amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号