首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The NADP analog and NAD diphosphate were tested for the coenzyme or inhibiting activity toward various dehydrogenases. These NAD derivatives showed little or no activity of as coenzymes for most of dehydrogenases tested. Only glyceraldehyde 3-phosphate dehydrogenase reduced the NADP analog under the high concentration of enzyme system. These NAD derivatives showed no inhibiting effect toward the reduction or oxidation of pyridine coenzymes.  相似文献   

2.
SYNOPSIS. Nicotinamide adenine dinucleotide phosphate (NADP) and nicotinamide adenine dinucleotide (NAD) linked isocitrate dehydrogenase and NADP linked alcohol dehydrogenase have been detected in Euglena gracilis var. bacillaris. The NADP isocitrate dehydrogenase showed half-maximal activity at a concentration of 3 × 10?5 M DL-isocitrate, but did not follow simple Michaelis-Menten kinetics with respect to substrate concentration. The optimal NADP concentration was about 0.06 mM, and activity fell off sharply on either side of this optimum. Fresh preparations of the enzyme migrated as single bands in disc electrophoresis, but two enzymatically active bands were present after frozen storage. The NAD isocitrate dehydrogenase followed Michaelis-Menten kinetics with respect to substrate. In crude extracts, no requirement for adenosine monophosphate, adenosine diphosphate, or sulfhydryl compounds could be found. NADP alcohol dehydrogenase activity could be found with either ethanol or propanol as substrate. Low concentrations of coenzyme A were moderately inhibitory. In tris(hydroxymethyl) aminomethane buffer (tris buffer), Euglena extracts reduced NAD slowly in the absence of exogenous substrate. In the absence of tris, no such reduction occurred. A similar phenomenon was observed with NADP.  相似文献   

3.
NADP was enzymatically synthesized from NAD and p-nitrophenyl phosphate or nucleoside monophosphate with the enzyme preparation of Proteus mirabilis (IFO 3849). In this phosphotransferring reaction, ATP did not serve as phosphoryl donor.

In addition to NADP, an unidentified substance (Compound I) showing fluorescence with methyl ethyl ketone and having no coenzyme activity to glutamic dehydrogenase was synthesized. The yield of NADP was usually below 30 per cent of Compound I.

NADP was isolated from the reaction mixture and its coenzyme activity to some dehydrogenases was demonstrated.

A new derivative of NAD (Compound I) synthesized from NAD and p-nitrophenyl phosphate by the enzyme preparation of Proteus mirabilis (IFO 3849), was isolated from the reaction mixture.

After degradation of this compound with snake venom nucleotide pyrophosphatase, Compound III was obtained. 5′-NMN was phosphorylated to Compound IV by the same enzyme preparation of P. mirabilis. By the determination of chemical constituents and the degradation with phosphomonoesterases, Compounds III and IV were identified as nicotinamide riboside 2′(3′),5′-diphosphate, and Compound I was identified as NADP analog which was formed by phosphorylation at the 2′ or 3′ position of the nicotinamide ribose moiety, not at the 2′ position of adenosine moiety of NAD.  相似文献   

4.
The changes in level of activity during the germination of wheat seedling (Triticum durum) in the dark have been investigated with 4 enzymes of glycolysis, 2 enzymes of the pentose phosphate shunt, 2 of the tricarboxylic acid cycle, 2 of amino acid metabolism and acid phosphatase. For some enzymes, which function in photosynthesis (fructose diphosphate aldolase, glyceraldehyde phosphate dehydrogenase NADP dependent), the level of activity was influenced by the presence of light.  相似文献   

5.
The kinetics of the NADP+- and phosphate-dependent oxidation of glutamic acid 5-semialdehyde are consistent with a rapid-equilibrium random order mechanism. The Km for DL-pyrroline-5-carboxylic acid is 2.5 mM, for NADP+ is 0.05 mM and for phosphate is 0.35 mM. The Vmax is approx. 8.0 units per mg protein. The reaction is highly specific for the DL-pyrroline-5-carboxylic acid and NADP+, but a number of divalent anions can substitute for phosphate. NADPH is competitive with respect to all three substrates and an analog of gamma-glutamyl phosphate, 3-(phosphonoacetylamido)-L-alanine, is competitive with respect to DL-pyrroline-5-carboxylic acid and non-competitive with respect to NADP+ and phosphate, suggesting dead-end complex formation.  相似文献   

6.
Catalytic and noncatalytic sites of the chloroplast coupling factor (CF1) were selectively modified by incubation with the dialdehyde derivative of fluorescent adenosine diphosphate analog 1,N6-ethenoadenosine diphosphate. The modified CF1 was reconstituted with EDTA-treated thylakoid membranes of chloroplasts. The effects of light-induced transmembrane proton gradient and phosphate ions on the fluorescence of 1,N6-ethenoadenosine diphosphate, covalently bound to the catalytic sites of ATP synthase, were studied. Quenching of fluorescence of covalently bound 1,N6-ethenoadenosine diphosphate was observed under illumination of thylakoid membranes with saturating white light. Addition of inorganic phosphate to the reaction mixture in the dark increased the fluorescence of the label. Quenching reappeared under repeated illumination; however, addition of phosphate ions had no effect on the fluorescence yield in this case. When 1,N6-ethenoadenosine diphosphate was covalently bound to noncatalytic sites of ATP synthase, no similar fluorescence changes were observed. The relation between the observed changes of 1,N6-ethenoadenosine diphosphate fluorescence and the mechanism of energy-dependent structural changes in the catalytic site of ATP synthase is discussed.  相似文献   

7.
The nicotinamide adenine dinucleotide phosphate (NADP)-specific isocitrate dehydrogenase from Blastocladiella emersonii was purified. The enzyme was very unstable. Satisfactory stability was obtained in the presence of 0.2% ovalbumin. The enzyme had a molecular weight of about 100,000. It did not exhibit homotropic cooperativity for any of it substrates and was not affected by the allosteric modifiers citrate and adenosine monophosphate, diphosphate, and tri-phosphate. The substrate saturation studies showed both intercept and slope effects in Lineweaver-Burk plots. The Km values for isocitrate and NADP were found to be 20 and 10 muM, respectively. The product inhibition pattern was compatible with a random sequential reaction mechanism. The enzyme catalyzed the oxidative decarboxylation of isocitrate about six times better than the reductive carboxylation of alpha-ketoglutarate. The enzyme was inhibited by glyoxylate plus oxalacetate. Assays conducted in the presence of low Mg2+ concentrations exhibited a lag. This lag could be abolished by the addition of reduced NADP to the assay mixture.  相似文献   

8.
A rapid oxygraph method of studying the permeability of the envelope of isolated chloroplasts was used. The outer envelope of aqueously isolated whole spinach (Spinacia oleracea L.) chloroplasts in buffer is readily permeable to 3-phosphoglyceric acid, which induces an immediate light dependent oxygen evolution. This light dependent oxygen evolution was completely eliminated by swelling these plastids in an osmotically dilute solution. Exogenous adenosine diphosphate, but not inorganic phosphate, strongly stimulated this oxygen evolution. This indicated that the chloroplast envelope is relatively permeable to adenosine diphosphate.

Oxygen evolution and swelling studies indicated that the chloroplast envelope is relatively impermeable to NADP and to ferredoxin.

A method is described whereby the percent of whole chloroplasts present in a chloroplast preparation may be rapidly estimated.

  相似文献   

9.
Mevalonate (MVA) metabolism provides the isoprenoids used in archaeal lipid biosynthesis. In synthesis of isopentenyl diphosphate, the classical MVA pathway involves decarboxylation of mevalonate diphosphate, while an alternate pathway has been proposed to involve decarboxylation of mevalonate monophosphate. To identify the enzymes responsible for metabolism of mevalonate 5-phosphate to isopentenyl diphosphate in Haloferax volcanii, two open reading frames (HVO_2762 and HVO_1412) were selected for expression and characterization. Characterization of these proteins indicated that one enzyme is an isopentenyl phosphate kinase that forms isopentenyl diphosphate (in a reaction analogous to that of Methanococcus jannaschii MJ0044). The second enzyme exhibits a decarboxylase activity that has never been directly attributed to this protein or any homologous protein. It catalyzes the synthesis of isopentenyl phosphate from mevalonate monophosphate, a reaction that has been proposed but never demonstrated by direct experimental proof, which is provided in this account. This enzyme, phosphomevalonate decarboxylase (PMD), exhibits strong inhibition by 6-fluoromevalonate monophosphate but negligible inhibition by 6-fluoromevalonate diphosphate (a potent inhibitor of the classical mevalonate pathway), reinforcing its selectivity for monophosphorylated ligands. Inhibition by the fluorinated analog also suggests that the PMD utilizes a reaction mechanism similar to that demonstrated for the classical MVA pathway decarboxylase. These observations represent the first experimental demonstration in H. volcanii of both the phosphomevalonate decarboxylase and isopentenyl phosphate kinase reactions that are required for an alternate mevalonate pathway in an archaeon. These results also represent, to our knowledge, the first identification and characterization of any phosphomevalonate decarboxylase.  相似文献   

10.
3-O-Immobilized and 6-immobilized pyridoxal 5′-phosphate analogs of Sepharose were bound to the allosteric site of nucleoside diphosphatase with very high affinity. Active immobilized nucleoside diphosphatase was prepared by reduction of the Schiff base linkage between the enzyme and pyridoxal 5′-phosphate bound to Sepharose with NaBH4. 3-O-Immobilized pyridoxal 5′-phosphate analog gave more active immobilized enzyme than the 6-analog; the immobilized enzyme on the 3-O-immobilized pyridoxal 5′-phosphate analog showed about 90% of activity of free enzyme. The immobilized enzyme thus prepared was less sensitive to ATP, an allosteric effector, and showed a higher heat stability than the free enzyme. When an assay mixture containing inosine diphosphate and MgCl2 was passed through a column of the immobilized enzyme at 37 °C, inosine diphosphate liberated inorganic phosphate almost quantitatively. Properties of the immobilized enzyme on the pyridoxal 5′-phosphate analog were compared with those of the immobilized enzyme on CNBr-activated Sepharose.  相似文献   

11.
The ubiquitous redox cofactors nicotinamide adenine dinucleotides [NAD and NADP] are very similar molecules, despite their participation in substantially different biochemical processes. NADP differs from NAD in only the presence of an additional phosphate group esterified to the 2′-hydroxyl group of the ribose at the adenine end and yet NADP is confined with few exceptions to the reactions of reductive biosynthesis, whereas NAD is used almost exclusively in oxidative degradations. The discrimination between NAD and NADP is therefore an impressive example of the power of molecular recognition by proteins. The many known tertiary structures of NADP complexes affords the possibility for an analysis of their discrimination. A systematic analysis of several crystal structures of NAD(P)-protein complexes show that: 1) the NADP coenzymes are more flexible in conformation than those of NAD; 2) although the protein-cofactor interactions are largely conserved in the NAD complexes, they are quite variable in those of NADP; and 3) in both cases the pocket around the nicotinamide moiety is substrate dependent. The conserved and variable interactions between protein and cofactors in the respective binding pockets are reported in detail. Discrimination between NAD and NADP is essentially a consequence of the overall pocket and not of a few residues. A clear fingerprint in NAD complexes is a carboxylate side chain that chelates the diol group at the ribose near the adenine, whereas in NADP complexes an arginine side chain faces the adenine plane and interacts with the phosphomonoester. The latter type of interaction might be a general feature of recognition of nucleotides by proteins. Other features such as strand-like hydrogen bonding between the NADP diphosphate moeties and the protein are also significant. The NADP binding pocket properties should prove useful in protein engineering and design. © 1997 Wiley-Liss Inc.  相似文献   

12.
Pyridine Nucleotide Transhydrogenase from Azotobacter vinelandii   总被引:5,自引:0,他引:5       下载免费PDF全文
A method is described for the partial purification of pyridine nucleotide transhydrogenase from Azotobacter vinelandii (ATCC 9104) cells. The most highly purified preparation catalyzes the reduction of 300 mumoles of nicotinamide adenine dinucleotide (NAD(+)) per min per mg of protein under the assay conditions employed. The enzyme catalyzes the reduction of NAD(+), deamino-NAD(+), and thio-NAD(+) with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as hydrogen donor, and the reduction of nicotinamide adenine dinucleotide phosphate (NADP(+)) and thio-NAD(+) with reduced NAD (NADH) as hydrogen donor. The reduction of acetylpyridine AD(+), pyridinealdehyde AD(+), acetylpyridine deamino AD(+), and pyridinealdehydedeamino AD(+) with NADPH as hydrogen donor was not catalyzed. The enzyme catalyzes the transfer of hydrogen more readily from NADPH than from NADH with different hydrogen acceptors. The transfer of hydrogen from NADH to NADP(+) and thio-NAD(+) was markedly stimulated by 2'-adenosine monophosphate (2'-AMP) and inhibited by adenosine diphosphate (ADP), adenosine triphosphate (ATP), and phosphate ions. The transfer of hydrogen from NADPH to NAD(+) was only slightly affected by phosphate ions and 2'-AMP, except at very high concentrations of the latter reagent. In addition, the transfer of hydrogen from NADPH to thio-NAD(+) was only slightly influenced by 2'-AMP, ADP, ATP, and other nucleotides. The kinetics of the transhydrogenase reactions which utilized thio-NAD(+) as hydrogen acceptor and NADH or NADPH as hydrogen donor were studied in some detail. The results suggest that there are distinct binding sites for NADH and NAD(+) and perhaps a third regulator site for NADP(+) or 2'-AMP. The heats of activation for the transhydrogenase reactions were determined. The properties of this enzyme are compared with those of other partially purified transhydrogenases with respect to the regulatory functions of 2'-AMP and other nucleotides on the direction of flow of hydrogen between NAD(+) and NADP(+).  相似文献   

13.
The paper describes chemical synthesis of uridine diphosphate 2-deoxyglucose (UDPdGlc) through reaction of uridine 5′-phosphomorpholidate with 2-deoxy-α-d-glucopyranosyl phosphate. The prepared analog of uridine diphosphate glucose (UDPGlc) served as a substrate for calf liver UDPGlc dehydrogenase (EC 1.1.1.22), the reaction product was identified as nucleotide deoxyhexuronic acid derivative. The apparent Km for UDPdGlc was found to be 60 times that of UDPGlc, and the relative V value for the analog was 0.09. The peculiar lag-period in reaction kinetics has been observed for the analog, and is presumably connected with the slow rate of the initial stages of the reaction. UDPdGlc was found to be quite an efficient substrate for UDPGlc 4-epimerases (EC 5.1.3.2) from yeast, calf liver and mung bean seedlings.  相似文献   

14.
The structural requirements of the NADP+ molecule as a coenzyme in the oxidative decarboxylation reaction catalysed by pigeon liver malic enzyme were studied by kinetic and fluorimetric analyses with various NADP+ analogues and fragments. The substrate L-malate had little effect on the nucleotide binding. Etheno-NADP+, 3-acetylpyridine-adenine dinucleotide phosphate, and nicotinamide-hypoxanthine dinucleotide phosphate act as alternative coenzymes for the enzyme. Their kinetic parameters were similar to that of NADP+. Thionicotinamide-adenine dinucleotide phosphate, 3-aminopyridine-adenine dinucleotide phosphate, 5'-adenylyl imidodiphosphate, nicotinamide-adenine dinucleotide 3'-phosphate and NAD+ act as inhibitors for the enzyme. The first two were competitive with respect to NADP+ and non-competitive with respect to L-malate; the other inhibitors were non-competitive with NADP+. All NADP+ fragments were inhibitory to the enzyme, with a wide range of affinity, depending on the presence or absence of a 2'-phosphate group. Compounds with this group bind to the enzyme 2-3 orders of magnitude more tightly than those without this group. Only compounds with this group were competitive inhibitors with respect to NADP+. We conclude that the 2'-phosphate group is crucial for the nucleotide binding of this enzyme, whereas the carboxyamide carbonyl group of the nicotinamide moiety is important for the coenzyme activity. There is a strong synergistic effect between the binding of the nicotinamide and adenosine moieties of the nucleotide molecule.  相似文献   

15.
16.
The localization of phosphoenol pyruvate carboxylase (EC 4.1.1.3.1.) in the leaf cells of Sorghum vulgare was investigated by using three techniques: the conventional aqueous and non aqueous methods gave conflicting results; the immunocytochemical techniques clearly showed that the enzyme is predominantly located in the cytoplasm of mesophyll cells.Abbreviations PEP phosphoenol pyruvate - PAG polyacrylamide gel - NADP MDH NADP malate dehydrogenase - FITC fluorescein isothiocyanate - SAB serum albumine bovine - DTT dithiothreitol - MDH malate dehydrogenase - ME malic enzyme - PBS phosphate buffer saline - PAP peroxidase anti-peroxidase  相似文献   

17.
d-Glucose-6-phosphate nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase (EC 1.1.1.49) from Bacillus licheniformis has been purified approximately 600-fold. The enzyme appears to be constitutive and exhibits activity with either oxidized NAD (NAD(+)) or oxidized NADP (NADP(+)) as electron acceptor. The enzyme has a pH optimum of 9.0 and has an absolute requirement for cations, either monovalent or divalent. The enzyme exhibits a K(m) of approximately 5 muM for NADP(+), 3 mM for NAD(+), and 0.2 mM for glucose-6-phosphate. Reduced NADP (NADPH) is a competitive inhibitor with respect to NADP(+) (K(m) = 10 muM). Phosphoenolpyruvate (K(m) = 1.6 mM), adenosine 5'-triphosphate (K(m) = 0.5 mM), adenosine diphosphate (K(m) = 1.5 mM), and adenosine 5'-monophosphate (K(m) = 3.0 mM) are competitive inhibitors with respect to NAD(+). The molecular weight as estimated from sucrose density centrifugation and molecular sieve chromatography is 1.1 x 10(5). Sodium dodecyl sulfate gel electrophoresis indicates that the enzyme is composed of two similar subunits of approximately 6 x 10(4) molecular weight. The intracellular levels of glucose-6-phosphate, NAD(+), and NADP(+) were measured and found to be approximately 1 mM, 0.9 mM, and 0.2 mM, respectively, during logarithmic growth. From a consideration of the substrate pool sizes and types of inhibitors, we conclude that this single constitutive enzyme may function in two roles in the cell-NADH production for energetics and NADPH production for reductive biosynthesis.  相似文献   

18.
Catalysis by the NADP-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) from Streptococcus mutans, a member of the aldehyde dehydrogenase (ALDH) family, relies on a local conformational reorganization of the active site. This rearrangement is promoted by the binding of NADP and is strongly kinetically favored by the formation of the ternary complex enzyme.NADP.substrate. Adiabatic differential scanning calorimetry was used to investigate the effect of ligands on the irreversible thermal denaturation of GAPN. We showed that phosphate binds to GAPN, resulting in the formation of a GAPN.phosphate binary complex characterized by a strongly decreased thermal stability, with a difference of at least 15 degrees C between the maximum temperatures of the thermal transition peaks. The kinetics of phosphate association and dissociation are slow, allowing both free and GAPN.phosphate complexes to be observed by differential scanning calorimetry and to be separated by native polyacrylamide electrophoresis run in phosphate buffer. Analysis of a set of mutants of GAPN strongly suggests that phosphate is bound to the substrate C-3 subsite. In addition, the substrate analog glycerol-3-phosphate has similar effects as does phosphate on the thermal behavior of GAPN. Based on the current knowledge on the catalytic mechanism of GAPN and other ALDHs, we propose that ligand-induced thermal destabilization is a mechanism that provides to ALDHs the required flexibility for an efficient catalysis.  相似文献   

19.
We have previously shown that Mycobacterium tuberculosis FprA, an NADPH-ferredoxin reductase homologous to mammalian adrenodoxin reductase, promotes the oxidation of NADP(+) to its 4-oxo derivative 3-carboxamide-4-pyridone adenine dinucleotide phosphate [Bossi RT, Aliverti A, Raimondi D, Fischer F, Zanetti G, Ferrari D, Tahallah N, Maier CS, Heck AJ, Rizzi M et al. (2002) Biochemistry41, 8807-8818]. Here, we provide a detailed study of this unusual enzyme reaction, showing that it occurs at a very slow rate (0.14 h(-1)), requires the participation of the enzyme-bound FAD, and is regiospecific in affecting only the C4 of the NADP nicotinamide ring. By protein engineering, we excluded the involvement in catalysis of residues Glu214 and His57, previously suggested to be implicated on the basis of their localization in the three-dimensional structure of the enzyme. Our results substantiate a catalytic mechanism for 3-carboxamide-4-pyridone adenine dinucleotide phosphate formation in which the initial and rate-determining step is the nucleophilic attack of the nicotinamide moiety by an active site water molecule. Whereas plant-type ferredoxin reductases were unable to oxidize NADP(+), the mammalian adrenodoxin reductase also catalyzed this unusual reaction. Thus, the 3-carboxamide-4-pyridone adenine dinucleotide phosphate formation reaction seems to be a peculiar feature of the mitochondrial type of ferredoxin reductases, possibly reflecting conserved properties of their active sites. Furthermore, we showed that 3-carboxamide-4-pyridone adenine dinucleotide phosphate is good ligand and a competitive inhibitor of various dehydrogenases, making this nucleotide analog a useful tool for the characterization of the cosubstrate-binding site of NADPH-dependent enzymes.  相似文献   

20.
Plants develop strategies to recycle phosphorus so that all organs receive adequate amounts of phosphorus, especially new growing organs. To evaluate the metabolic adaptation of rice plants under phosphorus deficient conditions, we selected several genes related to phosphorus utilization efficiency in the cell. Phosphoenolpyruvate carboxylase, triose phosphate translocator, phosphoenolpyruvate/phosphate translocator (PPT), pyruvate kinase, NAD dependent glyceraldehyde-3-phosphate dehydrogenase, and NADP dependent glyceraldehyde-3-phosphate dehydrogenase were selected because of their important roles in phosphorus utilization by the cell, and because they are part of the proposed bypass pathways by which the cells save phosphate. The most dramatic change was observed in the expression level of PPT (which transports phosphoenolpyruvate (PEP) from the cytosol into the chloroplast); thus we believe that PEP may play an important role in maintaining carbon metabolism under phosphate deficient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号