首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The mechanism of asymmetric production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 was examined by investigating the properties of the enzymes involved in the hydrolysis of dl-5-substituted hydantoins. The enzymatic production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 involved the following two successive reactions; the d-isomer specific hydrolysis, i.e., the ring opening of d-5-substituted hydantoins to d-form N-carbamyl amino acids by an enzyme, d-hydantoin hydrolase (d-HYD hydrolase), followed by the d-isomer specific hydrolysis, i.e., the cleavage of N-carbamyl-d-amino acids to d-amino acids by an enzyme, N-carbamyl-d-amino acid hydrolase (d-NCA hydrolase).

l-5-Substituted hydantoins not hydrolyzed by d-HYD hydrolase were converted to d-form 5- substituted hydantoins through spontaneous racemization under the enzymatic reaction conditions.

It was proposed that almost all of the dl-5-substituted hydantoins were stoichiometrically and directly converted to the corresponding d-amino acids through the successive reactions of d-HYD hydrolase and d-NCA hydrolase in parrallel with the spontaneous racemization of l-5-substituted hydantoins to those of dl-form.  相似文献   

2.
The enzyme which decomposes α-aminoisobutyric acid (AIB) to acetone in presence of pyruvate is active to various α-dialkyl-α-amino acids. From relative rates of decomposition of AIB, l-(+)isovaline, 2-ethyl-2-aminobutyrate and d-(?)isovaline, it was suggested that a carbon chain having a configuration of natural d-amino acids was required for the enzyme action.

On the other hand, this enzyme catalyzes the transamination between l-alanine and α-ketobutyrate. The equilibrium constant in the direction of l-α-aminobutyrate formation is 0.62. Electrophoretic migration, α-keto acid specificity and pH dependence of the aminotransferase activity were similar to those of AIB decomposing activity. Moreover, both activities increased in cells incubated by either l-α-aminobutyrate or AIB.  相似文献   

3.
ω-Amino acid: pyruvate aminotransferase, purified to homogeneity and crystallized from a Pseudomonas sp. F–126, has a molecular weight of 172,000 or 167,000±3000 as determined by the gel-filtration or sedimentation equilibrium method, respectively. The enzyme catalyzes the transamination between various ω-amino acids or amines and pyruvate which is the exclusive amino acceptor. α-Amino acids except l-α-alanine are inert as amino donor. The Michaelis constants are 3.3 mm for β-alanine, 19 mm for 2-aminoethane sulfonate and 3.3 mm for pyruvate. The enzyme has a maximum activity in the pH range of 8.5~10.5. The enzyme is stable at pH 8.0~10.0 and at up to 65°C at pH 8.0. Carbonyl reagents strongly inhibit the enzyme activity. Pyridoxal 5′-phosphate and pyridoxamine 5′-phosphate reactivate the enzyme inactivated by carbonyl reagents. The inhibition constants were determined to be 0.73 mm for d-penicillamine and 0.58 mm for d-cycloserine. Thiol reagents, chelating agents and l-α-amino acids showed no effect on the enzyme activity.  相似文献   

4.
d-Aminoacylase was found to be produced not only by S. olivaceus 62–3 isolated from soil but also by three strains of type culture of Streptomyces species. All four of these strains produced d-aminoacylase intracellularly only when an inducer was added to the culture medium. d-Amino acids or N-acetyl-d-amino acids were effective as inducers.

As S. tuirus showed the highest d-aminoacylase activity, the enzyme extract of this strain was subjected to further investigation to determine the optimal conditions for optical resolution of N-acetyl-dl-phenylglycine. Almost all contaminating l-aminoacylase in the enzyme extract could be eliminated by DEAE-Sephadex adsorption. d-Phenylglycine of 99.9% optical purity was obtained after complete hydrolysis of d-isomer with the use of d-aminoacylase solution.  相似文献   

5.
A new intracellular peptidase, which we call “d-peptidase S,” was purified from Nocardia orientalis IFO 12806 (ISP 5040). The purified enzyme was homogeneous on disc gel electrophoresis. The molecular weight and the isoelectric point were estimated to be 52,000 and 4.9, respectively. The optimum pH for the hydrolysis of d-leucyl-d-leucine was 8.0 to 8.1, and the optimum temperature was 36°C. The purified enzyme usually hydrolyzed the peptide bonds preceding the hydrophobic D-amino acids of dipeptides. Tri- and tetra-peptides extending to the amino terminus of such peptides were also hydrolyzed. Therefore, the enzyme is a carboxylpeptidase-like peptidase specific to d-amino acid peptides. The Km values for d-leucyl-d-leucine and l-leucyl-d-leucine were 0.21 × 10-3 and 0.44 × 10-3 m respectively. The activity was inhibited by several sulfhydryl reagents and two chelators, 8-hydroxyquinoline and o-phenanthroline.  相似文献   

6.
The mechanism of stereospecific production of l-amino acids from the corresponding 5-substituted hydantoins by Bacillus brevis AJ-12299 was studied. The enzymes involved in the reaction were partially purified by DEAE-Toyopearl 650M column chromatography and their properties were investigated. The conversion of dl-5-substituted hydantoins to the corresponding l-amino acids consisted of the following two successive reactions. The first step was the ring-opening hydrolysis to N-carbamoyl amino acids catalyzed by an ATP dependent l-5-substituted hydantoin hydrolase. This reaction was stereospecific and the N-carbamoyl amino acid produced was exclusively the l-form. N-Carbamoyl-l-amino acid was also produced from the d-form of 5-substituted hydantoin, which suggests that spontaneous racemization occurred in the reaction mixture. In the second step, N-carbamoyl-l-amino acid was hydrolyzed to l-amino acid by an N-carbamoyl-l-amino acid hydrolase, which was also an l-specific enzyme. The ATP dependency of the l-5-substituted hydantoin hydrolase was supposed to be the limiting factor in the production of l-amino acids from the corresponding 5-substituted hydantoins by this bacterium.  相似文献   

7.
Cells of Bacillus coagulans, strain HN-68 grown on the medium containing d-glucose, did not show any measurable d-glucose-isomerizing activity. However, when d-glucose-grown cells were shaked for a few hours in an induction medium containing d-xylose, induced formation of d-glucose-isomerizing enzyme occurred in the cells. Cell weight and number of survival cells showed only an increase of 30 and 10%, respectively during 6 hr induction.

The induced formation of d-glucose-isomerizing enzyme required organic nitrogen such as polypeptone in addition to d-xylose. Development of the maximum activity was observed when the concentration of d-xylose and polypeptone were 2 and 3%, respectively. Initial velocity of induced formation of d-glucose-isomerizing enzyme increased in proportion to the decrease of initial pH values of the induction medium, i.e., at 2 hr induction, activity at pH 4.5 was 5-fold increase than that at pH 8.0.

Induced formation of d-glucose-isomerizing enzyme was inhibited strongly by addition of chloramphenicol, tetracycline, streptomycin, cyanide or azide, and was promoted by threonine plus glycine.  相似文献   

8.
Abstract

A commercial immobilized d-glucose isomerase from Streptomyces murines (Sweetzyme) was used to produce l-rhamnulose from l-rhamnose in a packed-bed reactor. The optimal conditions for l-rhamnulose production from l-rhamnose were determined as pH 8.0, 60?°C, 300?g L?1 l-rhamnose as a substrate, and 0.6?h?1 dilution rate. The half-life of the immobilized enzyme at 60?°C was 809?h. Under the optimal conditions, the immobilized enzyme produced an average of 135?g L?1 l-rhamnulose from 300?g L?1 l-rhamnose after 16 days at pH 8.0, 60?°C, and 0.6?h?1 dilution rate, with a productivity of 81?g/L/h and a conversion yield of 45% in a packed-bed reactor.  相似文献   

9.
Growth of various microorganisms in media containing high concentrations of glycine or d-amino acids was examined. Susceptibilities to glycine or d-amino acids differed among microorganisms, and the differences in susceptibility have no direct relation with Gram staining, morphological forms, and aerobic or anaerobic nature of the organisms. Certain glycine-resistant bacteria tested, which included Bacillus cereus, Staphylococcus aureus and Serratia marcescens, exhibited relatively high oxidative activities towards glycine. The inhibition of the growth of Escherichia coli by either glycine or d-amino acids, which included d-threonine, d-alanine and d-lysine, was reversed by l-alanine, partialy by l-serine, and not by l-lysine or l-threonine. These results suggest that the growth inhibition of microorganisms by d-amino acids was similar to that by glycine. The incorporation of l-alanine into E. coli cells which were preincubated with glycine was less than those of preincubated without glycine. Particularly, the incorporation into the cell wall fraction was most susceptible to glycine. An additive effect of penicillin and glycine was observed in the inhibition of cell wall biosynthesis as determined by the intracellular accumulation of N-acetylamino sugar compounds.  相似文献   

10.
In the previous paper it was reported that a mold enzyme preparation from Aspergillus ustus strain f., which was found to oxidize d-glutamic acid specifically, was always accompanied by the oxidation of d-aspartic acid. The present study has been carried out to investigate whether or not d-glutamic and d-aspartic acids are oxidized by the same enzyme.

A highly purified enzyme preparation which still shows both activities has been obtained. Several evidences which support the assumption that the both reactions might be catalyzed by a single enzyme, which may be called d-monoamino-dicarboxylic acid oxidase, are also presented.  相似文献   

11.
The fractional determination of d-glutamic and d-aspartic acids using the enzyme preparation of Aspergillus ustus strain f. was studied. In the first part of this paper, the procedure of enzyme preparation, the effect of sodium chloride on enzyme activity, and a new device for the fractional determination of d-glutamic and d-aspartic acids are described. In the latter part, the contents of d-glutamic and d-aspartic acids of cancer and normal tissues are estimated. However, it was found that the cancer tissues are not characterized by the presence of d-glutamic acid in opposition to Kögl’s claim.  相似文献   

12.
An N-carbamyl-L-amino acid amidohydrolase was purified from cells of Escherichia coli in which the gene for N-carbamyl-L-amino acid amidohydrolase of Pseudomonas sp. strain NS671 was expressed. The purified enzyme was homogeneous by the criterion of SDS–polyacrvlamide gel electrophoresis. The results of gel filtration chromatography and SDS–polyacrylamide gel electrophoresis suggested that the enzyme was a dimeric protein with 45-kDa identical subunits. The enzyme required Mn2+ ion (above 1 mM) for the activity. The optimal pH and temperature were 7.5 and around 40°C, respectively, with N-carbamyl-L-methionine as the substrate. The enzyme activity was inhibited by ATP and was iost completely with p-chloromercuribenzoate (1 mM). The enzyme was strictly L-specific and showed a broad substrate specificity for N-carbamyl-L-α-amino acids.  相似文献   

13.
The formation of aromatic l-amino acid decarboxylase in bacteria was studied with intact cells in a reaction mixture containing the aromatic l-amino acids, 3,4-dihydroxy-l-phenyl-alanine, l-tyrosine, l-phenylalanine, l-tryptophan and 5-hydroxy-l-tryptophan. Activity was widely distributed in such genera as Achromobacter, Micrococcus, Staphylococcus and Sarcina. Bacterial strains belonging to the Micrococcaceae showed especially high decarboxylase activity toward l-tryptophan, 5-hydroxy-l-tryptophan and l-phenylalanine. M. percitreus AJ 1065 was selected as a promising source of aromatic l-amino acid decarboxylase. Results of experiments with this bacterium showed that the aromatic amine formed from l-tryptophan by the enzymatic method was identical with tryptamine. M. percitreus constitutively produced an enzyme which exhibited decarboxylase activity toward l-tryptophan. However, when large amounts of the aromatic l-amino acids listed above or the tryptamine formed from l-tryptophan were added, enzyme formation was repressed.

Cells with high enzyme activity were prepared by cultivating this bacterium at 30°C for 24 hr in a medium containing 0.5% glycerol, 0.5% yeast extract, 0.5% Polypepton, 3.0 vol % soybean protein hydrolyzate, 0.1% KH2PO4, 0.1% MgSO4 · 7H2O, 0.001% FeSO4 · 7H2O and 0.001% MnSO4 · 5H2O in tap water (pH 8.0).  相似文献   

14.
During the course of studies on the oxidative metabolism of d-sorbitol by acetic acid bacteria, it was found that d-sorbitol was almost quantitatively converted to 5-keto-d-fructose via l-sorbose by a certain strain of Gluconobacter suboxydans. In addition to 5-keto-d-fructose, three γ-pyrone compounds, kojic acid, 5-oxymaltol, and 3-oxykojic acid, 2-keto-l-gulonate, and several organic acids such as succinic, glycolic, and glyceric acids were confirmed in the culture filtrate of this bacterium.
  • The most suitable carbon source for 5-ketofructose fermentation by Gluconobacter suboxydans Strain 1 was confirmed to be d-sorbitol or l-sorbose using growing and resting cells. d-Fructose had little effect on the formation of this dicarbonylhexose.

  • The optimal pH for the formation from l-sorbose by intact cells was found to be at 4.2.

  • The activity of the pentose phosphate cycle in the resting cells was calculated as 13~17 μatoms/hr/mg of dry cells by the use of the manometric techniques.

  • There was no strain tested so far which could accumulate a large amount of 5- keto-d-fructose from d-sorbitol except this bacterium.

  • The experimental results shown in this paper makes the prediction that a certain dehydrogenating system of l-sorbose is functional in the organism, and the metabolic pathways of d-sorbitol via l-sorbose and 5-keto-d-fructose is proposed.

  相似文献   

15.
Tyrosine phenol lyase catalyzes a series of α,β-elimination, β-replacement and racemization reactions. These reactions were studied with intact cells of Erwinia herbicola ATCC 21434 containing tyrosine phenol lyase.

Various aromatic amino acids were synthesized from l-serine and phenol, pyrocatechol, resorcinol or pyrogallol by the replacement reaction using the intact cells. l(d)-Tyrosine, 3,4-dihydroxyphenyl-l(d)-alanine (l(d)-dopa), l(d)-serine, l-cysteine, l-cystine and S-methyl-l-cysteine were degraded to pyruvate and ammonia by the elimination reaction. These amino acids could be used as substrate, together with phenol or pyrocatechol, to synthesize l-tyrosine or l-dopa via the replacement reaction by intact cells. l-Serine and d-serine were the best amino acid substrates for the synthesis of l-tyrosine or l-dopa. l-Tyrosine and l-dopa synthesized from d-serine and phenol or pyrocatechol were confirmed to be entirely l-form after isolation and identification of these products. The isomerization of d-tyrosine to l-tyrosine was also catalyzed by intact cells.

Thus, l-tyrosine or l-dopa could be synthesized from dl-serine and phenol or pyrocatechol by intact cells of Erwinia herbicola containing tyrosine phenol lyase.  相似文献   

16.
l-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert l-psicose and d-tagatose to l-allose and d-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce l-allose and d-talose. Conversion reaction was performed with the reaction mixture containing 10% l-psicose or d-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of l-allose and d-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert l-psicose to l-allose without remarkable decrease in the enzyme activity over 7 times use and d-tagatose to d-talose over 37 times use. After separation and concentration, the mixture solution of l-allose and d-talose was concentrated up to 70% and crystallized by keeping at 4 °C. l-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% l-allose and 7.30% d-talose that were obtained from l-psicose and d-tagatose, respectively.  相似文献   

17.
d-Arabinose(l-fucose) isomerase (d-arabinose ketol-isomerase, EC 5.3.1.3) was purified from the extracts of d-arabinose-grown cells of Aerobacter aerogenes, strain M-7 by the procedure of repeated fractional precipitation with polyethylene glycol 6000 and isolating the crystalline state. The crystalline enzyme was homogeneous in ultracentrifugal analysis and polyacrylamide gel electrophoresis. Sedimentation constant obtained was 15.4s and the molecular weight was estimated as being approximately 2.5 × 105 by gel filtration on Sephadex G-200.

Optimum pH for isomerization of d-arabinose and of l-fucose was identical at pH 9.3, and the Michaelis constants were 51 mm for l-fucose and 160 mm for d-arabinose. Both of these activities decreased at the same rate with thermal inactivation at 45 and 50°C. All four pentitols inhibited two pentose isomerase activities competitively with same Ki values: 1.3–1.5 mm for d-arabitol, 2.2–2.7 mm for ribitol, 2.9–3.2 mm for l-arabitol, and 10–10.5 mm for xylitol. It is confirmed that the single enzyme is responsible for the isomerization of d-arabinose and l-fucose.  相似文献   

18.
d-Glucose-isomerizing enzyme has been extracted in high yield from d-xylose-grown cells of Bacillus coagulans, strain HN-68, by treating with lysozyme, and purified approximately 60-fold by manganese sulfate treatment, fractionation with ammonium sulfate and chromatography on DEAE-Sephadex column. The purified d-glucose-isomerizing enzyme was homogeneous in polyacrylamide gel electrophoresis and ultracentrifugation and was free from d-glucose-6-phosphate isomerase. Optimum pH and temperature for activity were found to be pH 7.0 and 75°C, respectively. The enzyme required specifically Co++ with suitable concentration for maximal activity being 10?3 m. In the presence of Co++, enzyme activity was inhibited strongly by Cu++, Zn++, Ni++, Mn++ or Ca++. At reaction equilibrium, the ratio of d-fructose to d-glucose was approximately 1.0. The enzyme catalyzed the isomerization of d-glucose, d-xylose and d-ribose. Apparent Michaelis constants for d-glucose and d-xylose were 9×10?2 m and 7.7×10?2 m, respectively.  相似文献   

19.
Glucose isomerizing enzyme was partially purified after investigation on the properties of crude enzyme extract. The crude extract was partly inactivated by the contact with air. The addition of manganese was effective to improve the stability. Magnesium was essential to the enzyme action and cobalt accelerated the reaction.

The maximal activity was observed at pH about 7.6 and 50°C was optimal for the incubation time of 30 minutes. The enzyme solution reacted with d-xylose as well as d-glucose. The activity of the enzyme was inhibited at high glucose concentrations.

An enzyme which catalyzes the conversion of d-glucose to d-fructose has been demonstrated in cell-free extracts of Streptomyces phaeochromo genus grown in the presence of D-xylose. The enzyme preparation reacts with d-glucose and d-xylose, but not with other sugars tested. It appears to require magnesium for the maximal activity and the addition of cobaltous ion remarkably intensifies the heat tolerance of the enzyme. The maximal activity occurs at about pH 9.3~9.5. Equilibrium is reached when about 52% fructose is present in the reaction mixture. The enzyme has half-maximal activity when the concentration of d-glucose is about 0.3 M at pH 9 and 60°C.  相似文献   

20.
Neutral sugar composition of cell walls of suspension-cultured tobacco cells was examined with the advance of culture age by an anion-exchange chromatography. Isolated cell walls gave on hydrolysis the following sugars: 2% of l-rhamnose, 6% of d-mannose, 26% of l-arabinose, 13% of d-galactose, 8% of d-xylose and 47% of d-glucose as neutral sugars. Little changes in composition of cell wall polysaccharides were recognized with the advance of culture age. Sugar composition of the extra-cellular polysaccharides was similar to that of hemicellulose fraction from cell walls. Pectinic acid gave on hydrolysis 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, d-galacturonic acid and its oligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号