首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
云芝多糖对巨噬细胞GPx基因表达的影响   总被引:22,自引:0,他引:22  
细胞内存在两种谷胱甘肽过氧化物酶;硒谷胱甘肽过氧化物酶和非硒谷肽甘肽过氧化物酶,它们在保护细胞免受氧化损伤等过程中起重要作用。为揭示云芝多糖作用与细胞抗氧化酶的关系,采用酶活性测定,斑点杂交等方法,探讨云芝多糖对小鼠腹腔巨噬细胞过氧化物酶表达的影响。结果显示,腹腔注射云芝多糖可以提高小鼠腹腔巨噬细胞的两种过氧化物酶活性,并使其mRNA含量增加,应用阻断剂的研究发现,云芝多糖对巨噬细胞SeGPx及G  相似文献   

2.
Adventitious rooting of Ebenus cretica cuttings was studied in order to examine a) the rooting ability of different genotypes in relation to electrophoretic patterns of peroxidases. b) the activity and electrophoretic patterns of soluble and wall ionically bound peroxidases, the lignin content and anatomical changes in the control and IBA treated cuttings of and genotypes in the course of adventitious root formation. In addition, a fraction of soluble cationic peroxidases was separated by gel filtration chromatography from the total soluble peroxidases of a genotype. No rooting occurred in cuttings without IBA-treatment. In both genotypes, electrophoretic patterns of soluble anionic peroxidases revealed two common peroxidase isoforms, while a fast-migrating anionic peroxidase isoform (A3) appeared only in genotypes. Both genotypes showed similar patterns of soluble, as well as wall ionically bound cationic peroxidase isoforms. The number of isoforms was unchanged during the rooting process (induction, initiation and expression phase) but an increase in peroxidase activity (initiation phase) followed by decrease has been found in IBA-treated cuttings. During initiation phase the lignin content was almost similar to that on day 0 in genotype while it was reduced at by about 50% in genotype at the respective time. Microscopic observations revealed anatomical differences between genotypes. According to this study, the and genotypes display differences in anatomy, lignin content, activity of soluble peroxidases and the electrophoretic patterns of soluble anionic peroxidase isoforms. The A3-anionic peroxidase isoform could be used as biochemical marker to distinguish and genotypes of E. cretica and seems to be correlated to lignin synthesis in rooting process.  相似文献   

3.
The present study was carried out to determine the localization of peroxidase activity in bull spermatozoa. 3,3′-Diaminobenzidine (DAB) was used as a substrate for revealing peroxidase activity, and light and electron microscopic analysis of the results obtained was performed. Peroxidase activity was detected in the mitochondria of the middle piece and the outer acrosomal membrane. Catalase was excluded as an enzyme, catalyzing the detected peroxidase activity. Concerning the biochemical properties of bull sperm peroxidases, peroxidase activity was found to be manifested in a large pH range, 4–10.5. Bull sperm peroxidase activity appeared to be temperature sensitive and azide sensitive and could be readily inhibited by phenylhydrazine. Electrophoretic analysis of the proteins from bull sperm extracts separated in a Davis-Ornstein system of 7% polyacrylamide gel, followed by the determination of peroxidase activity on the polyacrylamide gels, revealed that all 14 sperm protein fractions available on the gel possessed peroxidase when benzidine was used as a substrate. The possible reasons for the electrophoretic heterogeneity of bull sperm peroxidases are discussed. © 1994 Wiley-Liss, Inc.  相似文献   

4.
The effect of ozone was studied on the peroxidase activity from various compartments of Sedum album leaves (epidermis, intercellular fluid, residual cell material, and total cell material). The greatest increase following a 2-hour ozone exposure (0.4 microliters O(3) per liter) was observed in extracellular peroxidases. Most of the main bands of peroxidase activity separated by isoelectric focusing exhibited an increase upon exposure to ozone. Incubation experiments with isolated peeled or unpeeled leaves showed that leaves from ozone-treated plants release much more peroxidases in the medium than untreated leaves. The withdrawal of Ca(2+) ions reduced the level of extracellular peroxidase activity either in whole plants or in incubation experiments. This reduction and the activation obtained after addition of Ca(2+) resulted from a direct requirement of Ca(2+) by the enzyme and from an effect of Ca(2+) on peroxidase secretion. The ionophore A23187 promoted an increase of extracellular peroxidase activity only in untreated plants. The release of peroxidases by untreated and ozone-treated leaves is considerably lowered by metabolic inhibitors (3-(3,4-dichlorophenyl)-1,1-dimethylurea and sodium azide) and by puromycin.  相似文献   

5.
Cytoplasmic and salt-extracted wall peroxidase and nonspecific esterase activities along with growth analysis were investigated during the entire period of cotton fiber development. Both the peroxidase fractions, when assayed with chlorogenic and ferulic acids as substrates, recorded low levels during the fiber elongation phase, and a close relationship between cessation of elongation growth and increase in peroxidase activity was discernible. Nonspecific esterase activity in both cytoplasmic and salt-extracted fractions, on the other hand, showed higher activity during the elongation phase, whereas during the secondary thickening phase it decreased. The role of cytoplasmic peroxidase in IAA oxidation is discussed. It is suggested that esterases and peroxidases associated with wall fractions may well be involved in turnover of phenolic acids that are cross-linked to wall polysaccharides.  相似文献   

6.
1. After differential pelleting of bovine thyroid tissue the highest relative specific activities for plasma membrane markers are found in the L fraction whereas those for peroxidase activities (p-phenylenediamine, guaiacol and 3,3'-diaminobenizidine tetrachloride peroxidases) are found in the M fraction. 2. When M + L fractions were subjected to buoyant-density equilibration in a HS zonal rotor all peroxidases show different profiles. The guaiacol peroxidase activity always follows the distribution of glucose 6-phosphatase. 3. When a Sb fraction is subjected to Sepharose 2B chromatography three major peaks are obtained. The first, eluted at the void volume, consists of membranous material and contains most of the guaiacol peroxidase activity. Most of the protein (probably thyroglobulin) is eluted with the second peak. Solubilized enzymes are recovered in the third peak. 4. p-Phenylenediamine peroxidase activity penetrates into the gel on polyacrylamidegel electrophoresis, whereas guaiacol peroxidase activity remains at the sample zone. 5. DEAE-Sephadex A-50 chromatography resolves the peroxidase activities into two peaks, displaying different relative amounts of the different enzymic activities in each peak. 6. The peroxidase activities may be due to the presence of different proteins. A localization of guaiacol peroxidase in rough-endoplasmic-reticulum membranes (or in membranes related to them) seems very likely.  相似文献   

7.
Ascorbate levels and redox state, as well as the activities of the ascorbate related enzymes, have been analysed both in the apoplastic and symplastic spaces of etiolated pea (Pisum sativum L.) shoots during cellular differentiation. The ascorbate pool and the ascorbate oxidizing enzymes, namely ascorbate oxidase and ascorbate peroxidase, were present in both pea apoplast and symplast, whereas ascorbate free radical reductase and dehydroascorbate reductase were only present in the symplastic fractions. During cell differentiation the ascorbate redox enzymes changed in different ways, since a decrease in ascorbate levels, ascorbate peroxidase and ascorbate free radical reductase occurred from meristematic to differentiated cells, whereas ascorbate oxidase and dehydroascorbate reductase increased. The activity of secretory peroxidases has also been followed in the apoplast of meristematic and differentiating cells. These peroxidases increased their activity during differentiation. This behaviour was accompanied by changes in their isoenzymatic profiles. The analysis of the kinetic characteristics of the different peroxidases present in the apoplast suggests that the presence of ascorbate and ascorbate peroxidase in the cell wall could play a critical role in regulating the wall stiffening process during cell differentiation by interfering with the activity of secretory peroxidases.  相似文献   

8.
A tomato peroxidase involved in the synthesis of lignin and suberin   总被引:24,自引:0,他引:24  
The last step in the synthesis of lignin and suberin has been proposed to be catalyzed by peroxidases, although other proteins may also be involved. To determine which peroxidases are involved in the synthesis of lignin and suberin, five peroxidases from tomato (Lycopersicon esculentum) roots, representing the majority of the peroxidase activity in this organ, have been partially purified and characterized kinetically. The purified peroxidases with isoelectric point (pI) values of 3.6 and 9.6 showed the highest catalytic efficiency when the substrate used was syringaldazine, an analog of lignin monomer. Using a combination of transgenic expression and antibody recognition, we now show that the peroxidase pI 9.6 is probably encoded by TPX1, a tomato peroxidase gene we have previously isolated. In situ RNA hybridization revealed that TPX1 expression is restricted to cells undergoing synthesis of lignin and suberin. Salt stress has been reported to induce the synthesis of lignin and/or suberin. This stress applied to tomato caused changes in the expression pattern of TPX1 and induced the TPX1 protein. We propose that the TPX1 product is involved in the synthesis of lignin and suberin.  相似文献   

9.
The induction of peroxidases (EC 1.11.1.7) during elicitation of lignification by α-1,4-linked oligogalacturonides in cucumber hypocotyl segments ( Cucumis sativus L. cv, Wisconsin SMR 58) was investigated. The wounding associated with the preparation of hypocotyl segments induced a 19-fold increase in peroxidase activity during the following 72 h. The increase was partially due to an increase in activity of a constitutive peroxidase with a pI of 8.9 and partially due to the expression of new peroxidase isozymes with pIs of 3.8, 5.4, 6.2, 9.1 and 9.4. The oligogalacturonides did not induce any peroxidase activity in addition to the wound-induced activity. These results suggest that either the constitutive peroxidase isozyme (pI 8.9) of intact hypocotyls or some of the wound-induced peroxidases are involved in the oligogalacturonide-induced lignification.
Induction of the peroxidases by wounding was inhibited by cycloheximide. This indicates that they accumulate as a result of de novo protein synthesis. Actinomycin D caused only a modest inhibition of the wound-induction peroxidases, indicating that the process is regulated at the level of translation.
Peroxidase activity increased more rapidly in resistant than in susceptible cucumber hypocotyls after inoculation with the pathogen Cladosporium cucumerinum Ellis & Arthur. The pattern of isozymes which was induced by fungal infection of resistant hypocotyls was similar to the pattern of isozymes induced by wounding. This suggests that similar induction mechanisms may be involved in the two processes.  相似文献   

10.
J. Besemer 《Planta》1968,82(3):211-222
Summary On a simple nutrient medium in explants from roots of Cichorium intybus form shoots visible after about 14 days. Gibberellic acid (GA3) does not influence the spontaneous development of the chicory explants. GA3 in combination with kinetin inhibits shoot formation whereas kinetin alone promotes the process. On the other hand high concentrations of IAA inhibit the regeneration of shoots.The soluble proteins of chicory cultures treated with growth regulators were examined by disc-electrophoresis. It was shown that the proteins detected by staining with Amido black, phosphatases, esterases and glutamate dehydrogenase (GDH) present in the original root tissue remained constant under the different culture conditions during a period of 12 days. The quantitative changes of some of the proteins, phosphatases and esterases observed during the culture period were identical for all the different cultures in spite of the different morphogenetic behaviour. Only the activities of GDH and peroxidase changed after treatment with different growth regulators; however, in these cases, there was also no direct connection with the morphogenetic responses of the cultures.The specific activity of the GDH-band was promoted by IAA and at the same time the formation of peroxidases was inhibited. Kinetin delayed the formation of peroxidases during the first days of the culture period but promoted it later on. There was a repression by IAA of a specific kationic peroxidase. In the tissues treated with GA3 the activity of peroxidases was always higher than in the control tissue. This effect of GA3 can be partly explained by the fact that GA3 inhibits the release of peroxidases of the explants into the nutrient medium.  相似文献   

11.
S. C. Gupta  L. Beevers 《Planta》1985,166(1):89-95
The cellular location of three peroxidase isoenzymes (PRX) in mature leaf tissue of Petunia and their affinity for Concanavalin A-Sepharose were investigated. The isoenzymes PRXa, PRXb and PRXc were identified by their positions in starch-gel zymograms. The fast-moving anodic and cathodic peroxidase bands, the isoenzymes PRXa and PRXc respectively, were the most active peroxidases in extracellular extracts. The molecular forms of PRXa showed a tissue-specific distribution between midrib and remaining leaf tissue. An intermediate-moving anodic peroxidase band, the isoenzyme PRXb, was the most active peroxidase released after extraction of isolated mesophyll protoplasts. Small amounts of the peroxidase isoenzymes were present in cell-wall-bound fractions. Incubation of a crude protein fraction with Concanavalin A-Sepharose showed that the isoenzyme PRXb bound more firmly to Concanavalin A-Sepharose than the isoenzymes PRXa and PRXc, of which only one molecular form bound partly. The results are discussed with respect to a possible function of one of the peroxidase isoenzymes, and a possible role of oligosaccharide chains in determining the cellular location of plant peroxidases is suggested.Abbreviations Con A Concanavalin A - PRX peroxidase (isoenzyme)  相似文献   

12.
Iron deficiency differently affects peroxidase isoforms in sunflower   总被引:9,自引:0,他引:9  
The response of both specific (ascorbate peroxidase, APX) and unspecific (POD) peroxidases and H(2)O(2) content of sunflower plants (Helianthus annuus L. cv. Hor) grown hydroponically with (C) or without (-Fe) iron in the nutrient solution were analysed to verify whether iron deficiency led to cell oxidative status. In -Fe leaves a significant increase of H(2)O(2) content was detected, a result confirmed by electron microscopy analysis. As regards extracellular peroxidases, while APX activity significantly decreased, no change was observed in either soluble guaiacol or syringaldazine-dependent POD activity following iron starvation. Moreover, guaiacol-dependent POD activity was found to decrease in both ionically and covalently-cell-wall bound fractions, while syringaldazine-POD activity decreased only in the covalently-bound fraction. At the intracellular level both guaiacol-POD and APX activities underwent a significant decrease. The overall reduction of peroxidase activity was confirmed by the electrophoretic separation of POD isoforms and, at the extracellular level, by cytochemical localization of peroxidases by diaminobenzidine staining. The electrophoretic separation, besides quantitative differences, also revealed quantitative changes, particularly evident for ionically and covalently-bound fractions. Therefore, in sunflower plants, iron deficiency seems to affect the different peroxidase isoenzymes to different extents and to induce a secondary oxidative stress, as indicated by the increased levels of H(2)O(2). However, owing to the almost completely lack of catalytic iron capable of triggering the Fenton reaction, iron-deficient sunflower plants are probably still sufficiently protected against oxidative stress.  相似文献   

13.
Peroxidases   总被引:7,自引:0,他引:7  
The family of human peroxidases described includes myeloperoxidase, eosinophil peroxidase, uterine peroxidase, lactoperoxidase, salivary peroxidase, thyroid peroxidase and prostaglandin H1/2 synthases. The chemical identity of the peroxidase compound I and II oxidation states for the different peroxidases are compared. The identities of the distal and proximal amino acids of the catalytic site of each peroxidase are also compared. The gene characteristics and chromosomal location of the human peroxidase family have been tabulated and their molecular evolution discussed. Myeloperoxidase polymorphism and the mutations identified so far that affect myeloperoxidase activity and modulate their susceptibility to disease is described. The mechanisms for hypohalous and hypothiocyanate formation by the various peroxidases have been compared. The cellular function of the peroxidases and their hypohalites have been described as well as their inflammatory effects. The peroxidase catalysed cooxidation of drugs and xenobiotics that results in oxygen activation by redox cycling has been included. Low-density lipoprotein oxidation (initiation of atherosclerosis), chemical carcinogenesis, idiosyncratic drug reactions (e.g. agranulocytosis), liver necrosis or teratogenicity initiated by the cooxidation of endogenous substrates, plasma amino acids, drugs and xenobiotics catalysed by peroxidases or peroxidase containing cells have also been compared. Finally, peroxidase inhibitors currently in use for treating various diseases are described.  相似文献   

14.
An enzyme preparation from suspension cultured tobacco cells oxidized IAA only in the presence of added cofactors, Mn2+ and 2,4-dichlorophenol, and showed two pH optima for the oxidation at pH 4·5 and 5·5. Effects of various phenolic compounds and metal ions on IAA oxidase activity were examined. The properties of seven peroxidase fractions separated by column chromatography on DEAE-cellulose and CM-Sephadex, were compared. The peroxidases were different in relative activity toward o-dianisidine and guaiacol. All the peroxidases catalysed IAA oxidation in the presence of added cofactors. The pH optima for guaiacol peroxidation were very similar among the seven isozymes, but the optima for IAA oxidation were different. The anionic and neutral fractions showed pH optima near pH 5·5, but the cationic isozymes showed optima near pH 4·5. With guaiacol as hydrogen donor, an anionic peroxidase (A-1) and a cationic peroxidase (C-4) were very different in H2O2 concentration requirements for their activity. Peroxidase A-1 was active at a wide range of H2O2 concentrations, while peroxidase C-4 showed a more restricted H2O2 requirement. Gel filtration and polyacrylamide gel studies indicated that the three cationic peroxidases have the same molecular weight.  相似文献   

15.
The effect of 2-chloroethylphosphonic acid (ethrel) on cell growth patterns and per-oxidase activity (EC 1.11.1.7) and location in young Norway spruce cuttings ( Picea abies [L.] Karst.) was investigated. The peroxidase activity in a fraction containing soluble and membrane bound enzymes show a diurnal variation, with decreased activity during the light period and a corresponding increase during the following dark period. The decrease during the day could to some extent be counteracted by treatment with ethrel. It appears that ethrel affects only peroxidases in the isolated membrane fraction, since peroxidases bound to the cell wall were not affected by ethrel. In vitro experiments indicated that the hydrophobicity of soluble peroxidases was increased by treatment with ethylene. Cytochemical localization of peroxidase activity in differentiating tracheids revealed a clear ethrel-induced increase in the tonoplast. It appears that ethylene affects soluble peroxidases in vivo in such a way that they are directed to a more hydrophobic environment, like the tonoplast. Treatment with ethrel also changed the appearance of the rough endoplasmic reticulum (ER) and Golgi apparatus. Dilated ER cisternae were observed on electron micrographs, as a result of treatment with ethrel. The number of vesicles produced by the Golgi apparatus and also the amount of vesicles fusing with the plasma membrane in secondary-wall-forming tracheids increased considerably. The results clearly indicate that the stimulatory effect of ethylene in spruce seedlings on lignification and cell wall formation, is due to a general stimulation on both synthesis, transport and secretion of cell wall material and not on a stimulation of peroxidase activity as reported for other species.  相似文献   

16.
Actinomycetes secrete into their surroundings a suite of enzymes involved in the biodegradation of plant lignocellulose; these have been reported to include both hydrolytic and oxidative enzymes, including peroxidases. Reports of secreted peroxidases have been based upon observations of peroxidase-like activity associated with fractions that exhibit optical spectra reminiscent of heme peroxidases, such as the lignin peroxidases of wood-rotting fungi. Here we show that the appearance of the secreted pseudoperoxidase of the thermophilic actinomycete Thermomonospora fusca BD25 is also associated with the appearance of a heme-like spectrum. The species responsible for this spectrum is a metalloporphyrin; however, we show that this metalloporphyrin is not heme but zinc coproporphyrin. The same porphyrin was found in the growth medium of the actinomycete Streptomyces viridosporus T7A. We therefore propose that earlier reports of heme peroxidases secreted by actinomycetes were due to the incorrect assignment of optical spectra to heme groups rather than to non-iron-containing porphyrins and that lignin-degrading heme peroxidases are not secreted by actinomycetes. The porphyrin, an excretory product, is degraded during peroxidase assays. The low levels of secreted peroxidase activity are associated with a nonheme protein fraction previously shown to contain copper. We suggest that the role of the secreted copper-containing protein may be to bind and detoxify metals that can cause inhibition of heme biosynthesis and thus stimulate porphyrin excretion.  相似文献   

17.
An increase in exocarp peroxidase activity was observed in fruit at 5 to 30 days post pollination (DPP), and decreased at 40 and 50 DPP. Total peroxidase activity of the mesocarp was significantly lower than the exocarp in all developmental stages. Mesocarp peroxidase activity decreased consecutively from outer, to middle and, to inner tissue at every developmental stage. Total activity in the mesocarp peaked at 20 DPP. Native-PAGE of exocarp tissue showed at least two cathodic (basic) peroxidases and two anionic (acidic) peroxidases. The number of isozymes was greatest and bands most intense at 30 DPP. IEF-PAGE of the 5 to 50 DPP fruit exocarp showed at least 8 peroxidase isozymes (pI 4.6 to 9.6). Anion exchange chromatography showed only one peak of anionic peroxidase activity that was not evident until 15 DPP. This peak was greatest at 30 DPP and declined at 40 and 50 DPP. Cationic peroxidase isozymes appeared to be the predominant and most intense isoforms throughout fruit development. The changes in peroxidase activity corresponded to fruit formation and may be associated with susceptibility to fruit rot.  相似文献   

18.
Xylem sap proteins   总被引:6,自引:0,他引:6       下载免费PDF全文
Xylem sap from apple (Malus domestica Borkh), peach (Prunus persica Batsch), and pear (Pyrus communis L.) twigs was collected by means of pressure extrusion. This sap contained a number of acidic peroxidases and other proteins. Two other sources of xylem sap used in this study were stem exudates and guttation fluid. Similar peroxidases were also found in stem exudates and guttation fluids of strawberry (Fragaria x ananassa Duch.), tomato (Lycopersicum esculentum L.), and cucumber (Cucumis sativus L.). Isoelectric focusing activity gels showed that two peroxidases (isoelectric point [pl] 9 and pl 4.6) were present in initial stem exudates collected in the first 30 minutes after excision. Subsequent samples of stem exudate collected contained only the pl 4.6 isozyme. The pl 4.6 peroxidase isozyme was also found in root tissue and guttation fluid. These observations suggest that roots produce and secrete the pl 4.6 peroxidase into xylem sap. Cucumber seedlings were treated with 100 microliters per liter ethylene for 16 hours and the exudate from decapitated hypocotyl stumps was collected over a 3 hour period. Ethylene increased the peroxidase activity of stem exudates and inhibited the amount of exudate released. These observations suggest that xylem sap peroxidase may play a role in plugging damaged vascular tissue.  相似文献   

19.
Lipid peroxidation in vitro in rat liver microsomes (microsomal fractions) initiated by ADP-Fe3+ and NADPH was inhibited by the rat liver soluble supernatant fraction. When this fraction was subjected to frontal-elution chromatography, most, if not all, of its inhibitory activity could be accounted for by the combined effects of two fractions, one containing Se-dependent glutathione (GSH) peroxidase activity and the other the GSH transferases. In the latter fraction, GSH transferases B and AA, but not GSH transferases A and C, possessed inhibitory activity. GSH transferase B replaced the soluble supernatant fraction as an effective inhibitor of lipid peroxidation in vitro. If the microsomes were pretreated with the phospholipase A2 inhibitor p-bromophenacyl bromide, neither the soluble supernatant fraction nor GSH transferase B inhibited lipid peroxidation in vitro. Similarly, if all microsomal enzymes were heat-inactivated and lipid peroxidation was initiated with FeCl3/sodium ascorbate neither the soluble supernatant fraction nor GSH transferase B caused inhibition, but in both cases inhibition could be restored by the addition of porcine pancreatic phospholipase A2 to the incubation. It is concluded that the inhibition of microsomal lipid peroxidation in vitro requires the consecutive action of phospholipase A2, which releases fatty acyl hydroperoxides from peroxidized phospholipids, and GSH peroxidases, which reduce them. The GSH peroxidases involved are the Se-dependent GSH peroxidase and the Se-independent GSH peroxidases GSH transferases B and AA.  相似文献   

20.
Chemical and physicochemical properties of peroxidases producedback rotted sweet potato roots were investigated in comparisonwith those produced in cut one. Peroxidases in either diseased or cut tissue were composed offour major (D-A, D-B, D-C and D-D in diseased tissue and C-A,C-B, C-C and C-D in cut tissue) and several minor components.These peroxidases were separated from each other by DEAE-cellulosecolumn chromatography and other procedures. Several propertiesof the peroxidases were investigated.
  1. Optimum pH's of peroxidase were in the range of 5.5 to 6.0.
  2. The activity of each peroxidase was inhibited by acid, alkaliand some inhibitors such as cyanide, fluoride and azide. Azideinhibited more strongly D-A and C-A than D-B and C-B. On theother hand, cyanide and fluoride inhibited more strongly D-Band C-B than D-A and C-A.
  3. Substrate specificity as determimedby using pyrogallol, guaiacol,chlorogenic acid, caffeic acidand umbelliferone differed betweenthe main peroxidases. Thedegree of indoleacetic acid oxidaseactivity of these peroxidaseswas also different from each other.
  4. Light absorption spectraof the peroxidases showed that theybelonged to a-type peroxidaseexcept C-D. More precise investigationsof the spectra showedthat the spectra of D-A and C-A were differentfrom those ofD-B and C-B.
Peroxidase A (D-A), the main component in diseased tissue, waspurified by methods such as DEAE-cellulose chromatography andstarchgel electrophoresis to a grade higher than previouslyshown. It was homogeneous, according to investigations withultracentrifugation, immunochemical reaction and starch-gelelectrophoresis. Pyridine hemochrome of the peroxidase showedthat the heme in it was protoheme. Amino acid composition ofthe enzyme was determined. Peroxidase A oxidized various phenolicsubstances in the presence of H2O2. Indoleacetic acid oxidaseactivity of peroxidase A was inhibited by both chlorogenic acidand guaiacol. 1Part 45 of Phytopathological Chemistry of Sweet Potato withBlack Rot. 2Present address: Central Research Institute, Japan MonopolyCorporation, Yutakamachi, Tokyo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号