首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of pyridoxine-P and pyridoxamine-P to pyridoxal-P, inhibition and reactivation of the oxidases were investigated, using the Alcaligenes faecalis oxidase and the Azotobacter agilis oxidase catalyzing. Zone electrophoretic experiments indicated that the oxidases obtained from Alcaligenes faecalis and Azotobacter agilis moved to cathode and anode, respectively, under the same conditions. The oxidation-reduction potential of the both oxidase was found to be about ?50 mV. The oxidation of both pyridoxine-P and pyridoxamine-P was strongly inhibited by pyridoxal-P, pyridoxal, pyridine-4-aldehyde and 4-pyridoxic acid phosphate. This inhibition was markedly decreased by Tris-HCl buffer, and other amino compounds that form Schiff’s base of pyridoxal-P.

An enzyme “pyridoxamine-P transaminase” which catalyzed the transamination between pyridoxamine-P and α-ketoglutaric acid was found in certain anaerobic bacteria, such as Clostridium acetobutylicum, Cl. kainantoi, Cl. kaneboi and Cl. butyricum. The pyridoxamine-P transaminase in the cell-free extract of Cl. kainantoi was purified and some properties were investigated. α-Ketoglutaric acid appeared to be the dominant amino acceptor. Pyridoxamine-P was found to be active as amino donor, but other amino compounds were inert. Since the results were inconclusive, the possibility of vitamin B6-enzyme of pyridoxamine-P transaminase was not shown by the inhibitor studies. Physiological role of the pyridoxamine-P transaminase was discussed in the relation to vitamin B6 metabolism in anaerobic bacteria.  相似文献   

2.
Improved procedures for the isolation of apotryptophanase and its use in estimation of the vitamin B-6 coenzymes are presented. An excess of the apoenzyme is allowed to react with limiting amounts of pyridoxal-P. Estimation of the holotryptophanase thus formed by use of the chromogenic substrate. S-o-nitrophenyl-l-cysteine, provides a sensitive (1–400 pmol) and conveniently direct spectrophotometric assay for pyridoxal-P. For the specific estimation of pyridoxamine 5′-phosphate, samples are first reduced with NaBH4 to convert pyridoxal-P to pyridoxine-P (inactive). By nonenzymatic transamination with glyoxylate, pyridoxamine-P is then converted quantitatively to pyridoxal-P and estimated with apotryptophanase. The method gives excellent recoveries of the added coenzymes and indicates that in many tissue extracts pyridoxamine-P surpasses pyridoxal-P in concentration.  相似文献   

3.
Human erythrocytes rapidly convert vitamin B6 to pyridoxal-P and contain soluble phosphatase activity which dephosphorylates pyridoxal-P at a pH optimum of 6-6.5. This phosphatase was purified 51,000-fold with a yield of 39% by ammonium sulfate precipitation and chromatography on DEAE-Sepharose, Sephacryl S-200, hydroxylapatite, and reactive yellow 86-agarose. Sephacryl S-200 chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the enzyme was a dimer with a molecular mass of approximately 64 kDa. The phosphatase required Mg2+ for activity. It specifically catalyzed the removal of phosphate from pyridoxal-P, pyridoxine-P, pyridoxamine-P, 4-pyridoxic acid-P, and 4-deoxypyridoxine-P at pH 7.4. Nucleotide phosphates, phosphoamino acids, and other phosphorylated compounds were not hydrolyzed significantly nor were they effective inhibitors of the enzyme. The phosphatase showed Michaelis-Menten kinetics with its substrates. It had a Km of 1.5 microM and a Vmax of 3.2 mumol/min/mg with pyridoxal-P. The Vmax/Km was greatest with pyridoxal-P greater than 4-pyridoxic acid-P greater than pyridoxine-P greater than pyridoxamine-P. The phosphatase was competitively inhibited by the product, inorganic phosphate, with a Ki of 0.8 mM, and weakly inhibited by pyridoxal. It was also inhibited by Zn2+, fluoride, molybdate, and EDTA, but was not inhibited by levamisole, L-phenylalanine, or L(+)-tartrate. These properties of the purified enzyme suggest that it is a unique acid phosphatase that specifically dephosphorylates vitamin B6-phosphates.  相似文献   

4.
A new enzyme, agmatine oxidase, was found in Penicillium chrysogenum. The oxidation products of agmatine with the enzyme were identified as γ-guanidinobutyraldehyde, NH3 and H2O2. The enzyme rapidly oxidized agmatine, and slightly oxidized histamine, putrescine, 1,3-diaminopropane and cadaverine. Monoamines, polyamines and guanidyl derivatives were not oxidized by the enzyme. Maximal formation of the enzyme of P. chrysogenum was observed in the early stationary phase of growth, and thereafter the enzyme disappeared with consumption of substrate. In addition to agmatine, spermine, spermidine and putrescine were also effective as nitrogen sources. Agmatine oxidase was found in mycelia of fungi belonging to the genera of Aspergillus, Penicillium, Absidia, Fusarium, Mucor, Gibberella, Cylindrocarpon and Monascus when they were grown in agmatine-containing medium.  相似文献   

5.
The oxidation of methanol and formaldehyde was investigated by using some combination systems of alcohol oxidase, catalase, which were purified from Candida N-16, and hydrogen peroxide. The activity of alcohol oxidase was irreversibly inhibited when the enzyme was incubated with 2.5 mm hydrogen peroxide for 15 min. However, the oxidation of methanol to formaldehyde by alcohol oxidase in the presence of catalase was extremely promoted by the addition of 30 mm hydrogen peroxide. Alcohol oxidase could oxidize not only methanol but also formaldehyde as follows: HCHO + 02 + H2O→HCOOH + H2O2. The formaldehyde oxidizing activity was inhibited by hydrogen peroxide. The system containing alcohol oxidase and catalase appears to be the entity of the oxygen-dependent oxidation system of formaldehyde previously found in the cell-free extract of the yeast.  相似文献   

6.
A preparation of pyridoxine (pyridoxamine) 5′-phosphate oxidase, with a specific activity of 9,400 nmoles/hr/mg protein, 10-fold higher than that previously reported, was used to study the oxidation of various N-(5′-phospho-4′-pyridoxyl)amines. Values for Km, from 3.1 × 10?5 M to 1.6 × 10?3 M, and for Vmax, relative to pyridoxamine-P, of 20 to 140% were obtained. Compounds lacking a 5′-phosphate were not substrates, and the enzymic reaction was dependent on the presence of both FMN and O2. N-(phosphopyridoxyl)-L-amino acids had lower Km's than the corresponding -D-amino acid compounds. When 1-14C-N-(phosphopyridoxyl)glycine was used as a substrate, no 14CO2 was evolved, and 1-14C-glycine was detected in the incubation mixture.  相似文献   

7.
1. The oxidation of methanol to carbon dioxide by Candida N–16 grown on methanol was investigated. The presence of enzymes which catalyze the following reaction was found in the cell-free extract of the yeast employed; CH3OH→HCHO→HCOOH→CO2. 2. Methanol was oxidized to formaldehyde by an alcohol oxidase. The reaction was as follows; CH3OH+O2→HCHO+H2O2. The alcohol oxidase was crystallized after purification by ammonium sulfate-precipitation and column chromatography using DEAE-Sephadex A-50. A prosthetic group of the enzyme was proved to be FAD. The enzyme possessed a broad specificity for alcohols such as methanol, ethanol, n-propanol, n-butanol and n-amylalcohol. The enzyme was inducibly formed only by the addition of methanol. 3. The oxidation of formaldehyde to formate was catalyzed by a NAD-linked dehydrogenase dependent on GSH. 4. Formate was oxidized by a NAD-linked dehydrogenase. 5. Catalase was also found in the extract, and methanol was chemically oxidized by the reaction of catalase and hydrogen peroxide which was generated by the alcohol oxidase system. 6. The oxidation pathway from methanol to carbon dioxide was also found in other methanol-utilizing yeasts such as Candida N-17, Saccharomyces H-1 and Torulopsis M-1.  相似文献   

8.
In Cryptococcus neoformans, enzymic oxidation of various catechols leads to melanin, a proposed virulence factor. A phenol oxidase enzyme of Cryptococcus neoformans var. neoformans produced at 25 C has been purified from an ultracentrifugal supernatant of an extract of broken cells. Hydrophobic interaction chromatography followed by anion-exchange column chromatography allowed purification of the phenol oxidase. The molecular weight of the enzyme estimated by gel filtration was about 80,000 and a dimeric species (Mw = 160,000) was suggested. The isoelectric point of the protein was approximately 4.1. An NH2-terminal 31 amino acid sequence was determined using phenol oxidase electroblotted onto a PVDF membrane after nondenaturing gel electrophoresis. Upon searching the Peptide Institute (Osaka) data base, no proteins with high degrees of homology were found.  相似文献   

9.
It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an α-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa 3-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 °C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A1 and myxothiazol, which are inhibitors of mitochondrial bc 1 complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.  相似文献   

10.
Only one type (membrane-bound form) of NADH dehydrogenase could be detected in the log-phase cells ofBacillus megaterium. By sonification this enzyme could be effectively solubilized, while NADH oxidase remained bound to the membrane. A molecular weight of about 40 Kd was estimated for the dehydrogenase by gel electrophoresis in the presence of sodium dodecyl sulfate (SDS) with an activity stain. Mercuric chloride and 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) were inhibitors for both the NADH dehydrogenase and oxidase inB. megaterium. The inhibition studies of NADH oxidation suggested that NADH dehydrogenase provided the primary electron source for NADH oxidase in this organismin vitro. NADH dehydrogenase was highly specific for NADH, and Km was estimated to be 28.2 M. The enzyme was subjected to end-product inhibition of a competitive type.  相似文献   

11.
A new oxidative reaction of ethylene glycol was found with two alcohol oxidases from methanol yeast, Candida sp. and Pichia pastoris. Both alcohol oxidases oxidized ethylene glycol to glyoxal via glycolaldehyde. The optimum pHs for the oxidation of ethylene glycol and glycolaldehyde by the Candida alcohol oxidase were around 8.5 and 5.5, respectively, and their apparent Kms were 2.96 m and 28.6 mm, respectively. The optimum temperature was 40°C at pH 7.0. The optimum pHs for the oxidation of ethylene glycol and glycolaldehyde by the Pichia alcohol oxidase were around 8.0 and 6.0, respectively, and their optimum temperatures were 50 and 45°C, respectively, at pH 7.0. The apparent Km for glycolaldehyde was found to be 83.3 mm. For the accumulation of glyoxal, addition of catalase was effective, and a higher amount of glyoxal was obtained at a much lower temperature than the optimum for the alcohol oxidase. When 0.1 m ethylene glycol and glycolaldehyde were incubated with 80 units of the Pichia enzyme at 10°C, both substrates were almost completely converted to glyoxal after 10 and 3h of incubation, respectively.  相似文献   

12.
A procedure for obtaining crystalline preparations of tyramine oxidase of Sarcina lutea has been developed. The procedure included fractionation with ammonium sulfate, treatment with protamine sulfate and separation by column chromatographies on DEAE-cellulose, hydroxylapatite and sephadex G-150. The specific activity of enzyme was increased 5,700~ 6,000-fold through the procedure, over the crude cell extract. Crystals were prepared from solutions of the purified enzyme by adding solid ammonium sulfate. The crystals appeared as minute, highly refractive needles, with a bright yellow color.

With the use of crystalline preparations of tyramine oxidase of Sarcina lutea, substrate and inhibitor specificities of the enzyme were investigated. The enzyme oxidized tyramine and dopamine at almost the same rates. Other monoamines, diamines, polyamines and amino acids were not oxidized at all. The oxidation of tyramine proceeded as follows: Tyramine+O2+H2O→p-Hydroxyphenylacetaldehyde +NH3+H2O2. Ammonia and hydrogen peroxide were formed in stoichiometric amounts.

The enzyme was not inhibited by carbonyl reagents, such as hydroxylamine, hydrazine, semicarbazide and isoniazid, but was inhibited by p-CMB and iproniazid.  相似文献   

13.
Abstract

In this study, the different mole ratios of glucose oxidase/chitosan/dextran–aldehyde and glucose oxidase/chitosan/dextran–sulfate complexes were synthesized. The modification of glucose oxidase by non-covalent complexation with dextran and chitosan in different molar ratios was studied in order to increase the enzyme activity. The enzyme/polymer complexes obtained were investigated by UV spectrophotometer and dynamic light scattering. Activity determination of synthesized complexes and free enzyme were performed at a temperature range. The best results were obtained by Cchitosan/Cdextran–aldehyde = 10/1 ratio and Cchitosan/Cdextran–sulfate = 1/5 ratio that were used in thermal stability, shelf life, salt stress, and ethanol effect experiments. The results demonstrated that both complexes were thermally stable at 60?°C and had superior storage stability compared to the free glucose oxidase. Complexes showed higher enzymatic activity than free enzyme in the organic solvent environment using 10% ethanol. The complexes were resistant to salt stress containing 0.1?M NaCl or CaCl2. The particle size distribution results of the triple complex evaluated the complexation of the chitosan, dextran derivative, and glucose oxidase. The average size of the triple complex in diameter was found to be 325.8?±?9.3?nm. Overall findings suggest that the complexes of glucose oxidase, chitosan, and dextran showed significant enhancement in the enzyme activity.  相似文献   

14.
The response of glycolate oxidase from shoots of Salicornia europaea L. and from leaves of Pisum sativum L. to salt treatment during assay was studied by DCPIP reduction and O2 uptake. In Pisum there was found up to five times more glycolate oxidase activity per gram fresh weight than in Salicornia. However, the calculation of the specific activity pointed out that this result was caused only by the high level of enzyme protein in Pisum, and that specific activity from both species was of equal size. By the DCPIP method it was shown that in test media containing up to 1.0 M NaCl or KCl glycolate oxidase of Salicornia was of equal size compared with the control (medium without additional salts). With 2.0 M NaCl or KCl the activity decreased by about 80 and 30% respectively. Glycolate oxidase of Pisum was somewhat more salt sensitive. 1.0 M NaCl or KCl reduced the activity by about 35%. In the presence of 2.0 M NaCl or KCl the enzyme activity from Pisum was inhibited to about 80 and 60% respectively. By substituting sulfates for chlorides the activity of glycolate oxidase from both Salicornia and Pisum was stimulated strongly. 1.5 M Na2SO4 and 0.5 M K2SO4 (both are saturated solutions) caused an increase of glycolate activity from Salicornia of about 225 and 185% respectively, and from Pisum of about 50 and 30% respectively. Studying the response of glycolate oxidase to salt treatment by O2 uptake one must establish that with this method the degree of inhibition of enzyme activity at higher salt concentrations was always more severe than with dye reduction. Addition of 1.0 M NaCl or KCl to the assay medium caused an inhibition of glycolate oxidase activity from Salicornia of about 50% and from Pisum of about 60%. 2.0 M NaCl or KCl reduced the enzyme activity of both Salicornia and Pisum to nearly 10% of control activity. Furthermore, in contrast to DCPIP reduction no stimulating effect of sulfates on glycolate oxidase activity was detectable. Indeed, the inhibitory effect of sulfates was very slight. 1.0 M Na2SO4 caused a mean inhibition of glycolate oxidase activity of only 15% with both species, and in the presence of 1.5 M Na2SO4 50% of control activity was measured. At maximal K2SO4 concentrations (0.5 M) glycolate oxidase from both Salicornia and Pisum was also unaffected. It is supposed that the described salt tolerance of glycolate oxidase in vitro, possibly is due to an adaptation of the enzyme to high salt levels within peroxisomes in vivo.  相似文献   

15.
Glucose oxidase from Penicillium amagasakiense was purified to homogeneity by ion-exchange chromatography and deglycosylated with endoglycosidase H. On the basis of gas chromatography and sodium dodecyl sulphate/polyacrylamide gel electrophoretic (SDS-PAGE) analyses, the protein-bound high-mannose-type carbohydrate moiety corresponded to 13% of the molecular mass of glycosylated glucose oxidase. A total of six N-glycosylation sites per dimer were determined from the N-acetylglucosamine content. The enzymatically deglycosylated enzyme contained less than 5% of the original carbohydrate moiety. A molecular mass of 130 kDa (gel filtration) and 133 kDa (native PAGE) was determined for the dimer and 67 kDa (SDS-PAGE) for the monomer of the deglycosylated enzyme. The N-terminal sequence, which has not been published for glucose oxidase from P. amagasakiense to date and which showed less than 50% homology to the N terminus of glucose oxidase from Aspergillus niger, and the amino acid composition were not altered by the deglycosylation. Deglycosylation also did not affect the kinetics of glucose oxidation or the pH and temperature optima. It also did not increase the susceptibility of the enzyme to proteolytic degradation. However, deglycosylated glucose oxidase exhibited decreased pH and thermal stability. The thermal stability of both enzymes was shown to be dependent on the buffer concentration and was enhanced by certain additives, particularly 1 M (NH4)2SO4, which stabilised glucose oxidase 100- to 300-fold at 50 °C and pH 7–8, and 2 M KF, which stabilised the enzyme up to 36-fold at 60 °C and pH 6. In sodium acetate buffer, changes in pH (4–6) affected the affinity for glucose but had no effect on the V max of the reaction. In contrast, in TRIS buffer, pH 8, a 10-fold decrease in V max and a 2-fold decrease in K m were observed. Received: 8 October 1996 / Received revision: 14 January 1997 / Accepted: 17 January 1997  相似文献   

16.
Pyridoxamine (pyridoxine) 5′-phosphate oxidase (EC 1.4.3.5) purified from rabbit liver is competitively inhibited by the reaction product, pyridoxal 5′-phosphate. The Ki, 3 μM, is considerably lower than the Km for either natural substrate (18 and 24 μM for pyridoxamine 5′-phosphate and 25 and 16 μM for pyridoxine 5′-phosphate in 0.2 M potassium phosphate at pH 8 and 7, respectively). The Ki determined using a 10% rabbit liver homogenate is the same as that for the pure enzyme; hence, product inhibition invivo is probably not diminished significantly by other cellular components. Similar determinations for a 10% rat liver homogenate also show strong inhibition by pyridoxal 5′-phosphate. Since the reported liver content of free or loosely bound pyridoxal 5′-phosphate is greater than Ki, the oxidase in liver is probably associated with pyridoxal 5′-phosphate. These results also suggest that product inhibition of pyridoxamine-P oxidase may regulate the invivo rate of pyridoxal 5′-phosphate formation.  相似文献   

17.
We describe the isolation of microorganisms utilizing fructosyl-amine (Amadori compound) from the marine environment and of fructosyl-amine oxidase from a marine yeast. Using fructosyl-valine (Fru-Val), a model Amadori compound for glycated hemoglobin, we isolated 12 microbial strains that grow aerobically in a minimal medium supplemented with Fru-Val as the sole nitrogen source. Among these strains, a yeast strain identified as Pichia sp. N1-1, produced a Fru-Val–oxidizing enzyme. The enzyme was purified in its active form, a single-polypeptide water-soluble protein of 54 kDa by gel electrophoresis, producing H2O2 with the oxidation of Fru-Val. By its substrate specificity, the enzyme was categorized as a novel fructosyl-amine oxidase. This is the first study on the isolation of microorganisms utilizing fructosyl-amine in the marine environment and of fructosyl-amine oxidase from budding yeast. Received October 21, 1999; accepted September 12, 2000  相似文献   

18.
An enzyme which catalyzes the oxidation of poly(vinyl alcohol) (PVA) has been purified from a fraction adsorbed to DEAE-Sephadex at pH 7.0 from PVA-degrading enzyme activities produced by a bacterial symbiotic mixed culture in a culture broth when the culture was grown in a minimal medium where PVA served as a sole source of carbon and energy. The enzyme was separated from a coexisting oxidized PVA hydrolase by dye-ligand chromatography on Matrex Gel Blue A. The purified enzyme was homogeneous as judged by polyacrylamide gel electrophoreses in the absence and presence of SDS.

The enzyme is a single polypeptide with a molecular weight of about 40,000 and has an isoelectric point of 4.5. The amino acid composition of the enzyme has been determined and found to have no histidine. The N- and C-terminal amino acid residues are both alanine. The enzyme solution is pink and shows absorption maxima at 276, 364, and 469 nm. One atom of non-heme iron has been detected per molecule in the enzyme.

The enzyme catalyzes the oxidation of PVA and also of various low molecular weight secondary alcohols to the corresponding ketones with the production of H202 and the consumption of 02. The molar ratio of these ketones, H202 and 02 is 1:1:1. The most effective electron acceptor is 02, while 2,6-dichlorophenolindophenol and nitro blue tetrazolium also serve as the acceptor with efficiencies to 02 of about 31 and 16%, respectively. The enzyme is, therefore, considered to be a secondary alcohol oxidase.

The enzyme is most active at pH 7.0 and at 45°C and is stable between pH 5.0 and 9.0 and at temperatures below 45°C. The activity is inhibited by Hg2+ and is restored by the addition of reduced glutathione, although p-chloromercuribenzoate has no effect.

The enzyme shows a common antigenicity in immunodiffusion and neutralization reactions with antisera to a secondary alcohol oxidase previously isolated from another fraction adsorbed on SP-Sephadex at pH 7.0 of the PVA-degrading enzyme activities [Agric. Biol. Chem., 43, 1225 (1979)]. The relations between these two secondary alcohol oxidases are discussed.  相似文献   

19.
A formaldehyde oxidase activity was found in cell-free extracts of methanol-grown yeast Candida boidinii. Loss of alcohol oxidase activity in a mutant, 48, led to loss of the formaldehyde oxidase activity, indicating that the same enzyme is probably responsible for both activities. This could be demonstrated with the purified alcohol oxidase which oxidizes, besides lower primary alcohols, formaldehyde to formate. The K m value for formaldehyde is 5.7 mM. It seems that alcohol oxidase is not implicated in formaldehyde oxidation in vivo.  相似文献   

20.
Milk xanthine oxidase was immobilized by covalent attachment to CNBr-activated Sepharose 4B and by adsorption to n-octylamine-substituted Sepharose 4B. The amounts of activity immobilized for the two preparations were 30 and 90%, respectively. The pH optima for free and adsorbed xanthine oxidase were at 8.6 and 8.2, respectively. Both free and immobilized xanthine oxidase show substrate inhibition. The apparent inhibition constant (Ki′) found for adsorbed xanthine oxidase with xanthine as substrate was higher than the Ki for the free enzyme, which was shown to be due to substrate diffusion limitation in the pores of the carrier beads (internal diffusion limitation). Higher substrate concentrations, as desirable for practical application in organic synthesis, can therefore be used with the immobilized enzyme without decreasing the rate. As a result of the internal diffusion limitation the apparent Michaelis constant (Km′) for adsorbed xanthine oxidase was also higher than the Km for the free enzyme. Immobilized xanthine oxidase was more stable than the free enzyme during storage at 4 and 30°C. Both forms rapidly lost activity during catalysis. The loss was proportional to the amount of substrate converted. Coimmobilization of xanthine oxidase with superoxide dismutase and catalase improved the operational stability, suggesting that O2? and H2O2 side-products of the enzymatic reaction were involved in the inactivation. Coimmobilization with albumin also had some stabilizing effect. Complete surrounding of xanthine oxidase by protein, however, by means of etrapment in a glutaraldehyde-crosslinked gelatin matrix, considerably enhanced the operational half-life. This system was less efficient than the Sepharose preparations either because much activity was lost during the immobilization procedure and/or because it had poor flow properties. Xanthine (15 mg)was converted by an adsorbed xanthine oxidase preparation and product (uric acid) was isolated in high yield (84%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号