首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a result of screening isoalkyl or isoalkenyl substituted aromatic hydrocarbon assimilating microorganisms, 19 strains of isopropylbenzene assimilating bacteria were isolated. Thirteen of these strains were found to grow on α-methylstyrene and all 4 strains tested were also found to grow on isobutylbenzene.

Among them, 2 strains (S107B1 and S182BI) were selected for further study and were identified as Ps. convexa and Ps. ovalis, respectively.

Furthermore, some examined aromatic hydrocarbon utilizing bacteria were classified into two groups by differences in substrate assimilation specificity.  相似文献   

2.
An unidentified bacterial strain S107B1, isolated from soil by use of isopropylbenzene as a carbon source, was shown to bring about oxidation of α-methylstyrene and β-methylstyrene,

One of the oxidation products produced from α-methylstyrene was identified as the new compound, (—)-cis-23-dihydroxy-1-isopropenyl-6-cyclohexene.

The same strain S107B1 also oxidized β-methylstyrene and produced 3-phenylpropionaldehyde and benzoic acid.

From these results, the existence of reductive step for the aerobic degradation of these aromatic hydrocarbons by this strain was made clear. The initial attack on these aromatic hydrocarbons and a cyclohexenediol compound formed from α-methylstyrene were discussed.  相似文献   

3.
Waste Water Bacterial Isolates Resistant to Heavy Metals and Antibiotics   总被引:3,自引:0,他引:3  
Sewage water of Casablanca, an industrial city in Morocco, was studied for microorganisms resistant to heavy metals. Isolates were purified and collected on agar slants to be screened for resistance to heavy metals, including mercury in vitro. The strains that showed high resistance to heavy metals were also studied for their resistance to antibiotics and aromatic hydrocarbons. Results indicated that the strains most resistant to all tested products belonged to Ps. fluorescens, Ps. aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus sp. These strains exhibit high minimal inhibitory concentrations for heavy metals such as cadmium (2 mm) or mercury (1.2 mm). Growth of Ps. fluorescens and Klebsiella pneumoniae in the presence of heavy metals was also determined, and the growth curves indicated that mercury, copper, and zinc present a slight inhibitory action, while cadmium and silver could have a potent inhibitory action on growth compared with the controls. These studies also investigated growth in media containing aromatic compounds as the sole source of carbon. The results demonstrate that these strains could be good candidates for remediation of some heavy metals and aromatic compounds in heavily polluted sites. Received: 23 December 1999 / Accepted: 6 April 2000  相似文献   

4.
Sphingomonas yanoikuyae B1 is able to grow on a wide variety of aromatic compounds including biphenyl, naphthalene, phenanthrene, toluene, m-, and p-xylene. In addition, the initial enzymes for degradation of biphenyl have the ability to metabolize a wide variety of different polycyclic aromatic hydrocarbons. The catabolic pathways for the degradation of both the monocyclic and polycyclic aromatic hydrocarbons are intertwined, joining together at the level of (methyl)benzoate and catechol. Both upper branches of the catabolic pathways are induced when S. yanoikuyae B1 is grown on either class of compound. An analysis of the genes involved in the degradation of these aromatic compounds reveals that at least six operons are involved. The genes are not arranged in discrete pathway units but are combined in groups with genes for the degradation of both classes of compounds in the same operon. Genes for multiple dioxygenases are present perhaps explaining the ability of S. yanoikuyae B1 to grow on a wide variety of aromatic compounds. Received 10 August 1997/ Accepted in revised form 15 August 1997  相似文献   

5.

We investigated the biodegradation of hydrocarbon components by Nocardia sp. H17-1 and the catabolic genes involved in the degradation pathways of both aliphatic and aromatic hydrocarbons. After 6 days of incubation, the aliphatic and aromatic fractions separated from Arabian light oil were degraded 99.0 ± 0.1% and 23.8 ± 0.8%, respectively. Detection of the catabolic genes involved in the hydrocarbon degradation indicated that H17-1 possessed the alkB genes for n-alkane biodegradation and catA gene for catechol 1,2-dioxygenase. However, H17-1 had neither the C23O gene for the degradation of aromatic hydrocarbons nor the catechol 2,3-dioxygenase activity. The investigation of the genes involved in the biodegradation of hydrocarbons supported the low degradation activity of H17-1 on the aromatic fractions.  相似文献   

6.
Sphingobium yanoikuyae B1 utilizes both polycyclic aromatic hydrocarbons (biphenyl, naphthalene, and phenanthrene) and monocyclic aromatic hydrocarbons (toluene, m- and p-xylene) as its sole source of carbon and energy for growth. The majority of the genes for these intertwined monocyclic and polycyclic aromatic pathways are grouped together on a 39 kb fragment of chromosomal DNA. However, this gene cluster is missing several genes encoding essential enzymatic steps in the aromatic degradation pathway, most notably the genes encoding the oxygenase component of the initial polycyclic aromatic hydrocarbon (PAH) dioxygenase. Transposon mutagenesis of strain B1 yielded a mutant blocked in the initial oxidation of PAHs. The transposon insertion point was sequenced and a partial gene sequence encoding an oxygenase component of a putative PAH dioxygenase identified. A cosmid clone from a genomic library of S. yanoikuyae B1 was identified which contains the complete putative PAH oxygenase gene sequence. Separate clones expressing the genes encoding the electron transport components (ferredoxin and reductase) and the PAH dioxygenase were constructed. Incubation of cells expressing the dioxygenase enzyme system with biphenyl or naphthalene resulted in production of the corresponding cis-dihydrodiol confirming PAH dioxygenase activity. This demonstrates that a single multicomponent dioxygenase enzyme is involved in the initial oxidation of both biphenyl and naphthalene in S. yanoikuyae B1.  相似文献   

7.
8.
Summary Pseudomonas sp. NCIB 10643 grew on a range of n-alkylbenzenes (C2-C7) and on several branched species within this chain size (isopropylbenzene, isobutylbenzene, sec-butylbenzene, tert-butylbenzene and tert-amylbenzene). All of the alkylbenzenes were catabolized via ring attack, rather than side-chain attack, proceeding via initial dioxygenase activity resulting in the corresponding 2,3-dihydro-2,3-dihydroxyalkylbenzene, which underwent reduction to the corresponding 2,3-dihydroxyl-intermediate (3-alkyl-substituted catechols). The 3-substituted catechols were ring-cleaved by an extra-diol type enzyme between C1 and C2 resulting in characteristic meta ring-fission products. Further catabolism was by hydrolytic attack to give alkyl-chain dependent carboxylic acids and, presumably, 2-oxopenta-4-enoate. Details of the intermediates and enzymes involved in alkylbenzene catabolism are given. This is the most versatile aromatic, ring-cleaving, alkylbenzene-utilizing bacterium thus far reported.Offprint requests to: C. Ratledge  相似文献   

9.
During the course of an investigation of the microbial assimilation of aromatic hydrocarbons, several strains were found to produce a large amount of cumic acid from p-cymene.

Five strains, S449B1, B2, B3, B4 and B6, were isolated from soil with the aromatic hydrocarbon substrates. They all assimilated both p-cymene and cumene. The strain S449B3 grew also on p-xylene, and S449B6 on p-xylene, toluene, and ethylbenzene.

They were all shown to be capable of producing an ultraviolet-absorbing substance from p-cymene. This substance was isolated in crystalline form and identified as cumic acid by infrared absorption spectrum and other observations.

The superior strain, S449B6, produced the acid as much as 1000 mg/1 in shaking culture at 30°C after 24 hours. The yields were increased up to approximately 1700 mg/1 after further investigations. Addition of calcium carbonate and considerable agitation were favorable conditions for the acid production.

The taxonomical studies of these strains were carried out, and they were all identified as closely resembling Pseudomonas desmolytica.  相似文献   

10.
11.
Summary Bacterial mixed cultures able to degrade the polycyclic aromatic hydrocarbons (PAH) phenanthrene, fluorene and fluoranthene, were obtained from soil using conventional enrichment techniques. From these mixed cultures three pure strains were isolated:Pseudomonas paucimobilis degrading phenanthrene;P. vesicularis degrading fluorene andAlcaligenes denitrificans degrading fluoranthene. The maximum rates of PAH degradation ranged from 1.0 mg phenanthrene/ml per day to 0.3 mg fluoranthene/ml per day at doubling times of 12 h to 35 h for growth on PAH as sole carbon source. The protein yield during PAH degradation was about 0.25 mg/mg C for all strains. Maximum PAH oxidation rates and optimum specific bacterial growth were obtained near pH 7.0 and 30°C. After growth entered the stationary phase, no dead end-products of PAH degradation could be detected in the culture fluid.  相似文献   

12.
Abstract

Several fungal strains (Fusarium, Botrytis, Beauveria) were screened for their ability to transform three bicyclic halo-γ-lactones with a trimethylcyclohexane ring. Most of the micro-organisms carried out hydrolytic dehalogenation and transformed these lactones into two hydroxy-γ-lactones: cis (?)-2-hydroxy-4,4,6-trimethyl-9-oxabicyclo[4.3.0]nonan-8-one and trans (+)-2-hydroxy-4,4,6-trimethyl-9-oxabicyclo[4.3.0]nonan-8-one. The structures of all substrates and products were established on the basis of their spectral data and X-ray analysis. The method presented offers an alternative route to obtaining hydroxylactones with high enantiomeric excess.  相似文献   

13.
14.
Hypersaline Phormidium strains were grown in media amended with naphthalene and anthracene. Phormidium tenue was identified as tolerating and effectively degrading polycyclic aromatic hydrocarbons that may be toxic in the environment. GC/MS analysis explained the degradation of these compounds by P. tenue. A dioxygenase enzyme system was evident by the formation of anthracene dione as the first degradation compound. This strain could be used for bioremediation of polycyclic aromatic hydorcarbon pollution on seashores.  相似文献   

15.
Phenylalkanes are ubiquitously found in nature as pollutants originating from oil, gas oil and petrol. Rising commercial demand for mineral oil fractions has led to the increased prevalence of environmental contamination, whereby these particular hydrocarbons are encountered by bacteria which have subsequently developed sophisticated metabolic routes for purposes of degradation. Herein a detailed analysis of these metabolic pathways in the degradation of phenylalkanes by Mycobacterium neoaurum and Rhodococcus erythropolis highlighted preponderance for the formation of certain metabolites of which 17 were identified and whereby striking differences were noticed depending specifically upon the length of the substrate’s alkyl chain. Although the degradation of even-numbered phenylalkane substrates was assumed to result in the generation of phenylacetic acid formed due to substrate terminal oxidation and subsequent β-oxidation, cultures of M. neoaurum and R. erythropolis were determined in an extracellular accumulation of odd-numbered acidic metabolites, suggesting a simultaneous presence of sub-terminal degradation mechanisms. However, results obtained from biotransformation assays containing even-chained phenylalkanoic acid intermediates as substrates revealed exclusive β-oxidative mechanisms and no generation of odd-numbered degradation products. R. erythropolis in contrast to M. neoaurum also proved viable for hydroxylation of the aromatic ring of metabolites. Interestingly, the generation of phenylacetic acid and subsequently 2-hydroxyphenyl acetic acid was monitored and entailed the presence of the lactone intermediate 2-coumaranone. These results enhance our understanding of the degradation of phenylalkanes and illustrate the potential application of such species in the bioremediation of these common environmental pollutants and in the strains’ diverse abilities to transform mineral oil compounds to new valuable products.  相似文献   

16.
Bacterial strains were enriched from building rubble contaminated with polycyclic aromatic hydrocarbons (PAHs). These strains were studied as an inoculum in bioremediation processes with contaminated building rubble. The selection criteria for the bacteria were broad profiles in PAH degradation, stable expression of the traits and tolerance to alkaline conditions. Various strains of Micrococcus sp., Dietzia sp., Rhodococcus sp. and Pseudomonas sp. met the selection criteria. In general, degradative activity was limited at higher pH values. Strains of Micrococcus were suitable for practical use as complete degradation of various PAHs was observed at pH values exceeding 10. Strains of Dietzia sp. showed broad PAH degradation profile, but in some cases degradation came to a halt leaving some of the PAHs unutilized. With Dietzia sp. this could be due to inhibitory effects from the accumulation of toxic PAH metabolic products and/or growth‐limiting media conditions.  相似文献   

17.
d-Glucosaminic acid has recently been found to be an oxidized product of d-glucosamine formed by Ps. fluorescens. It has been revealed that many strains of oxidative bacteria can oxidize glucosamine. The formation of glucosamine acid has been recognized among a large number of strains of Pseudomonas, Acetobacter and Gluconobacter, by means of paper chromatography. Furthermore, one of these strains, A. melanogenum Beijerinck, oxidized glucosamine to glucosaminic acid with the theoretical consumption of oxygen as Ps. fluorescens liquefaciens. Glucosaminic acid was proved by isolation and identification by means of using resting cells.

The experiment of growth shows that Ps. fluorescens liq. could not secure any energy by means of the oxidation of glucosamine.  相似文献   

18.
Analysis of the bacterial population of soil surface samples from a creosote-contaminated site showed that up to 50% of the culturable micro-organisms detected were able to utilise a mixture of cresols. From fifty different microbial isolates fourteen that could utilise more than one cresol isomer were selected and identified by 16S rRNA analysis. Eight isolates were Rhodococcus strains and six were Pseudomonas strains. In general, the Rhodococcus strains exhibited a broader growth substrate range than the Pseudomonas strains. The distribution of various extradiol dioxygenase (edo) genes, previously associated with aromatic compound degradation in rhodococci, was determined for the Rhodococcus strains by PCR detection and Southern-blot hybridization. One strain, Rhodococcus sp. I1 exhibited the broadest growth substrate range and possessed five different edogenes. Gene disruption experiments indicated that two genes (edoC and edoD) were associated with isopropylbenzene and naphthalene catabolism respectively. The other Rhodococcus strains also possessed some of the edo genes and one (edoB) was present in all of the Rhodococcus strains analysed. None of the rhodococcal edo genes analysed were present in the Pseudomonas strains isolated from the site. It was concluded that individual strains of Rhodococcus possess a wide degradative ability and may be very important in the degradation of complex mixtures of substrates found in creosote.  相似文献   

19.
Sphingomonas chungbukensis DJ77 is a novel aromatic hydrocarbon-degrading bacterium capable of growing on phenanthrene as its sole source of carbon and energy. In this study, the protein expression profiles of S. chungbukensis DJ77 grown in the presence of phenanthrene were investigated by using two-dimensional gel electrophoresis (2-DE). Among 1000 protein spots visualized by 2-DE, the four proteins (i.e. 4-oxalocrotonate decarboxylase, 2-hydroxy-6-oxo-phenylhexa-2,4-dienoate hydrolase, glutathione S-transferase, and 2,3-dihydroxybiphenyl 1,2-dioxygenase) showing the significant upregulation by phenanthrene were identified by reversed-phase liquid chromatography–tandem mass spectrometry. Evidently, these proteins were involved in the metabolism of aromatic hydrocarbons. This can explain why S. chungbukensis DJ77 shows a significantly higher rate of phenanthrene consumption during the degradation process. The present analysis of proteomic responses and the detailed analysis results will be quite helpful to better understand the global physiology of S. chungbukensis DJ77, as proteome databases for various aromatic hydrocarbon-degrading strains have already been established.  相似文献   

20.
Five naphthalene- and salicylate-utilizing Pseudomonas putida strains cultivated for a long time on phenanthrene produced mutants capable of growing on this substrate and 1-hydroxy-2-naphthoate as the sole sources of carbon and energy. The mutants catabolize phenanthrene with the formation of 1-hydroxy-2-naphthoate, 2-hydroxy-1-naphthoate, salicylate, and catechol. The latter products are further metabolized by the meta- and ortho-cleavage pathways. In all five mutants, naphthalene and phenanthrene are utilized with the involvement of plasmid-born genes. The acquired ability of naphthalene-degrading strains to grow on phenanthrene is explained by the fact that the inducible character of the synthesis of naphthalene dioxygenase, the key enzyme of naphthalene and phenanthrene degradation, becomes constitutive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号