首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2-Ethylthio-1-(4-hydroxy-3-methoxyphenyl)-propanone-(1) (I) which has been previously isolated from mercaptolysis oil of pine ethanol lignin was also obtained from mercaptolysis oil of spruce wood. 1-Ethylthio-1-(4-hydroxy-3-methoxyphenyl)-propanone-(2) (II), synthesis of which has been reported before, was found to be converted into (I) on mercaptolysis.  相似文献   

2.
During tree growth, hardwoods can initiate the formation of tension wood, which is a strongly stressed wood on the upper side of the stem and branches. In Eucalyptus globulus, tension wood presents wider and thicker cell walls with low lignin, similar glucan and high xylan content, as compared to opposite wood. In this work, tension and opposite wood of E. globulus trees were separated and evaluated for the production of bioethanol using ethanol/water delignification as pretreatment followed by simultaneous saccharification and fermentation (SSF). Low residual lignin and high glucan retention was obtained in organosolv pulps of tension wood as compared to pulps from opposite wood at the same H-factor of reaction. The faster delignification was associated with the low lignin content in tension wood, which was 15% lower than in opposite wood. Organosolv pulps obtained at low and high H-factor (3,900 and 12,500, respectively) were saccharified by cellulases resulting in glucan-to-glucose yields up to 69 and 77%, respectively. SSF of the pulps resulted in bioethanol yields up to 35 g/l that corresponded to 85–95% of the maximum theoretical yield on wood basis, considering 51% the yield of glucose to ethanol conversion in fermentation, which could be considered a very satisfactory result compared to previous studies on the conversion of organosolv pulps from hardwoods to bioethanol. Both tension and opposite wood of E. globulus were suitable raw materials for organosolv pretreatment and bioethanol production with high conversion yields.  相似文献   

3.
Average effect of a mutation in lignin biosynthesis in loblolly pine   总被引:6,自引:0,他引:6  
Cinnamyl alcohol dehydrogenase (CAD, E.C. 1.1.1.195) is a monolignol biosynthetic enzyme that catalyzes the final step of lignin subunit biosynthesis in higher plants. Recently, a mutant allele of the cad gene, cad-n1, encoding for the CAD enzyme, was discovered in loblolly pine. By reducing the expression of the cad gene, this mutant has a decreased lignin content and major changes in the lignin composition in wood. In this study, we found that the substitution of a wild-type allele by cad-n1 was associated with a significant effect on 2nd-year shoot elongation in a half-sib family of loblolly pine (designated family 7–1037). The average effect of cad-n1 appeared to increase with tree growth and was greater for stem radial growth than height growth. An increase of 14.1% in de-barked volume in year 4 was associated with cad-n1. Co-segregation analysis indicated that the cad locus itself might represent a gene that governs stem growth in pine. The significance of the mutation cad-n1 for tree growth and wood processing is discussed. Received: 31 December 1998 / Accepted: 30 January 1999  相似文献   

4.
Selective Degradation of Wood Components by White-Rot Fungi   总被引:6,自引:0,他引:6  
In order to find naturally occurring white-rot fungi which preferentially degrade lignin. 25 different species of such fungi were cultivated on pine wood blocks and on kraft lignin agar plates with and without cellulose. Due to differences in phenol oxidase reactions on the kraft lignin agar plates, the 25 fungi could be divided into two groups, 1 and 2, which also differed in other properties. The three Group I fungi Sporotrichum pulverulentum, Phanerochaete sp. L1 and Polyporus dichrous produced high levels of endo-l,4-β-glucanase and cellobiose:quinone oxidoreductase in shaking cellulose flasks and a low level of phenol oxidase in standing wood meal flasks, The four fungi Merulius tremellosus, Phlebia radiata, Pycuoporus cinnabarinus and Pleurotus ostreatus from Group 2, on the other hand, produced low levels of endo-1,4-β-glucanase and cellobiose:.quinone oxidoreductase in the cellulose. flasks and a high level of phenol oxidase in the wood meal flasks. Analyses of pine wood blocks degraded by the above-mentioned fungi in the presence of either malt extract, asparagine or NH4H2PO4 revealed that malt extract gave good lignin degradation. In the presence of this nutrient source. P. cinnabarinus, at 3.4% weight loss, even degraded 12.5% lignin without loss of cellulose or mannan. No common degradation pattern was, however, obtained using mall extract, asparagine or NH4H2PO4, It is suggested that while-rot fungi, which preferentially degrade lignin, may be found among Group 2 fungi producing large amounts of phenol oxidases.  相似文献   

5.
Relatively poor SCP production (4.2 mg/L h) was obtained using C. cellulolyticum and ground aspen wood treated with steam at atmospheric pressure for 1 h. The percentage of protein in the final product increased to 21.4% at a specific growth rate of 0.15 h?1 when the wood sample was treated with steam at a higher pressure (280 psig for 4 min) according to the "Stake" process. Alkali treatment (10% and 15% w/w at 121°C for 30 min), known to solubilize hemicelluloses and some of the lignin, gave intermediate results. More complete delignification of wood using NaClO2 increased the protein composition in the final product to 37.9%, at a specific growth rate of 0.19 h?1. Cellulose utilization was lowest (12.4%) in the case of the wood treated with steam at atmospheric pressure; it was higher at 75.3 and 78.5% for wood treated with NaOH at 10 and 15% w/w levels, respectively. The cellulose utilization was highest (90%) for wood treated with NaClO2.  相似文献   

6.
In our study, early period degradation (10 days) of Scots pine (Pinus sylvestris L.) sapwood by the brown-rot fungus Coniophora puteana (Schum.: Fr.) Karst. (BAM Ebw.15) was followed at the wood chemical composition and ultrastructurelevel, and highlighted the generation of reactive oxygen species (ROS). An advanced decay period of 50 days was chosen for comparison of the degradation dynamics. Scanning UV microspectrophotometry (UMSP) analyses of lignin distribution in wood cells revealed that the linkages of lignin and polysaccharides were already disrupted in the early period of fungal attack. An increase in the lignin absorption A280 value from 0.24 (control) to 0.44 in decayed wood was attributed to its oxidative modification which has been proposed to be generated by Fenton reaction derived ROS. The wood weight loss in the initial degradation period was 2%, whilst cellulose and lignin content decreased by 6.7% and 1%, respectively. Lignin methoxyl (–OCH3) content decreased from 15.1% (control) to 14.2% in decayed wood. Diffuse reflectance Fourier-transform infrared (DRIFT) spectroscopy corroborated the moderate loss in the hemicellulose and lignin degradation accompanying degradation. Electron paramagnetic resonance spectra and spin trapping confirmed the generation of ROS, such as hydroxyl radicals (HO), in the early wood degradation period. Our results showed that irreversible changes in wood structure started immediately after wood colonisation by fungal hyphae and the results generated here will assist in the understanding of the biochemical mechanisms of wood biodegradation by brown-rot fungi with the ultimate aim of developing novel wood protection methods.  相似文献   

7.
Due to their outstanding capability of degrading the recalcitrant biomacromolecule lignin, white rot fungi have been attracting interest for several technological applications in mechanical pulping and wood surface modification. However, little is known about the time course of delignification in early stages of colonisation of wood by these fungi. Using a Fourier transform near infrared (FT-NIR) spectroscopic technique, lignin loss of sterilised spruce wood shavings (0.4–2.0 mm particle size) that had been degraded by various species of white rot fungi could be monitored already during the first 2 weeks. The delignification kinetics of Dichomitus squalens, three Phlebia species (Phlebia brevispora, Phlebia radiata and Phlebia tremellosa), three strains of Ceriporiopsis subvermispora as well as the white rot ascomycete Hypoxylon fragiforme and the basidiomycete Oxyporus latemarginatus were determined. Each of the fungi tested was able to reduce the lignin content of spruce wood significantly during the first week. The amount of delignification achieved by the selected white rot fungi after 2 weeks ranged from 7.2% for C. subvermispora (FPL 105.752) to 2.5% for P. radiata. Delignification was significant (P = 95%) already after 3 days treatment with C. subvermispora and P. tremellosa. Activities of extracellular ligninolytic enzymes (laccase, manganese peroxidase and/or lignin peroxidase), expressed by each of the tested fungi, were determined. Lignin was degraded when peroxidase activity was detected in the fungal cultures, but only a low level of correlation between enzyme activities and the extent of delignification was found.  相似文献   

8.
The syringyl to guaiacyl (S:G) ratio of hardwood lignin has long been identified as a significant parameter in delignification processes and more recent results have shown that it is also important in determining the amount of ethanol that can be obtained from fermentation of hydrolyzed wood. Acidolysis of Klason or acid insoluble lignin in dioxane/water/HCl was being investigated when syringyl and guaiacyl nuclei with a diketone-containing sidechain were observed as the major products. The area ratio of the two gas chromatogram peaks appeared to be indicative of the S:G ratio. After optimization of the method the relative standard deviation was found to be in the range of 0.3–3.76% for Klason lignin from a wide range of Eucalyptus grandis grown in South Africa. The method was then compared to nitrobenzene oxidation (NBO) using 13 poplars in a double-blind study. The respective S:G ratios were used to calculate percentages of S units and when these values were plotted against each other a linear correlation was obtained with a slope of approximately 1.0 (R2 = 0.86). The largest discrepancy for any poplar was 6.9% (62% vs. 58% S units). Both methods convincingly demonstrated a significant decrease in lignin content with an increase in the S:G ratio. Discussion is presented on a series of reaction that could lead to the formation of the two diketones.  相似文献   

9.
Due to their outstanding capability of degrading the recalcitrant biomacromolecule lignin, white rot fungi have been attracting interest for several technological applications in mechanical pulping and wood surface modification. However, little is known about the time course of delignification in early stages of colonisation of wood by these fungi. Using a Fourier transform near infrared (FT-NIR) spectroscopic technique, lignin loss of sterilised spruce wood shavings (0.4–2.0 mm particle size) that had been degraded by various species of white rot fungi could be monitored already during the first 2 weeks. The delignification kinetics of Dichomitus squalens, three Phlebia species (Phlebia brevispora, Phlebia radiata and Phlebia tremellosa), three strains of Ceriporiopsis subvermispora as well as the white rot ascomycete Hypoxylon fragiforme and the basidiomycete Oxyporus latemarginatus were determined. Each of the fungi tested was able to reduce the lignin content of spruce wood significantly during the first week. The amount of delignification achieved by the selected white rot fungi after 2 weeks ranged from 7.2% for C. subvermispora (FPL 105.752) to 2.5% for P. radiata. Delignification was significant (P = 95%) already after 3 days treatment with C. subvermispora and P. tremellosa. Activities of extracellular ligninolytic enzymes (laccase, manganese peroxidase and/or lignin peroxidase), expressed by each of the tested fungi, were determined. Lignin was degraded when peroxidase activity was detected in the fungal cultures, but only a low level of correlation between enzyme activities and the extent of delignification was found.  相似文献   

10.
An environmentally sound biobleaching to get high quality paper pulp from mixed wood pulp was attempted employing laccase from Aspergillus fumigatus VkJ2.4.5 for lignin removal. Laccase treatment was performed in the presence of a mediator N-hydroxybenzotriazole (HBT, 1.5% w/w), resulting into notably higher level of delignification of the pulp. Enzyme at 10 Ug−1 of pulp at 50°C, pH 6.0, for 2 h with a pulp consistency of 10% was found suitable for enabling maximum decrease in the kappa number. The kappa number and yellowness decreased by 14 and 4% whereas ISO brightness improved by 7%. The presence of a characteristic peak at 280 nm indicated the presence of lignin in the effluent during biobleaching. Analysis of FTIR spectra of residual lignin revealed characteristic modifications following enzymatic bleaching by laccase mediator system (LMS). Variations in morphology and crystallinity of pulp were evaluated by scanning electron microscopy and X-ray diffraction analysis.  相似文献   

11.
Solid-state fermentation of aspen (Populus tremuloides) wood with Merulius tremellosus for 8 weeks removed 52% of the lignin but only 12% of the total wood weight, and increased the cellulase digestibility to 53% from 18%. Water-soluble and enzyme-solubilized lignin degradation products accumulated. Delignification was fastest at temperatures between 25 and 32.5°C and at a water-to-wood ratio of 2. Initial pH values between 4 and 6 were optimal; M. tremellosus acidified the wood to below pH 3.5 as it grew. The fungus tolerated CO2 concentrations of at least 14% and O2 concentrations down to 7% in the bulk gas phase. Both simple and complex nitrogen supplements inhibited delignification. Supplementary KH2PO4, MgSO4, CaCl2, thiamine, and trace elements had little effect on the fermentation. Four isolates of M. tremellosus had very similar abilities to delignify aspen wood. Biological delignification with M. tremellosus may be a useful pretreatment for enzymatic saccharification or ruminant feeding.  相似文献   

12.
Lodgepole pine from forest thinnings is a potential feedstock for ethanol production. In this study, lodgepole pine was converted to ethanol with a yield of 276 L per metric ton of wood or 72% of theoretical yield. The lodgepole pine chips were directly subjected to sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) pretreatment and then disk-milled; the recovered cellulose substrate was quais-simultaneously saccharified enzymatically and fermented to ethanol using commercial cellulases and Saccharomyces cerevisiae D5A. The liquor stream from the pretreatment containing hydrolyzed sugars mainly from hemicelluloses was fermented by the same yeast strain after detoxification using an XAD resin column. The SPORL pretreatment was conducted at 180°C for a period of 25 min with a liquor-to-wood ratio of 3:1 (v/w) in a laboratory digester. Three levels of sulfuric acid charge (0.0%, 1.4%, and 2.2% on an oven dried wood basis in w/w) and three levels of sodium bisulfite charge (0.0%, 4.0%, and 8.0% in w/w) were applied. Mechanical and thermal energy consumption for milling and pretreatment were determined. These data were used to determine the efficiency of sugar recoveries and net ethanol energy production values and to formulate a preliminary mass and energy balance.  相似文献   

13.
White-rot fungi, which have the ability to degrade all the wood components including lignin, are of great interest in biotechnological processes based on wood and other lignocellulosic materials. It was demonstrated earlier that enough lignin can be degraded to cause a decrease in the energy demand for production of thermomechanical pulp if wood chips are pretreated by cellulaseless mutants of white-rot fungi. This paper concerns the growth conditions in wood for three white-rot fungi and their cellulaseless mutants in order to determine optimal conditions for such pretreatment processes. The pH and temperature optima have been determined as well as the growth rate in wood. The results show that the growth rate in wood. at least for Cel 44 (a cellulaseless mutant of Sporotrichum pulverulentum), is not the rate-limiting step in delignification. From different mixtures of urea and NH4H2PO4 the optimal nitrogen source was determined for the mutants. The optimal C/N ratio was found to vary between 160/1 and 400/1. It is suggested that the lower the C/N ratio, the faster the growth. It was also demonstrated that both water- and acetone-extractable substances in wood supported the growth of cellulaseless mutants. When some glucose was added to the wood, the weight loss caused by Cel 44 increased. All these observations support earlier findings that lignin in wood cannot be degraded by white-rot fungi unless a more easily metabolizable carbon source is used simultaneously.  相似文献   

14.
A combined sulfuric acid-free ethanol cooking and pulverization process was developed in order to achieve the complete saccharification of the cellulosic component of woody biomass, thereby avoiding the problems associated with the use of strong acid catalysts. Eucalyptus wood chips were used as a raw material and exposed to an ethanol/water/acetic acid mixed solvent in an autoclave. This process can cause the fibrillation of wood chips. During the process, the production of furfural due to an excessive degradation of polysaccharide components was extremely low and delignification was insignificant. Therefore, the cooking process is regarded not as a delignification but as an activation of the original wood. Subsequently, the activated solid products were pulverized by ball-milling in order to improve their enzymatic digestibility. Enzymatic hydrolysis experiments demonstrated that the conversion of the cellulosic components into glucose attained 100% under optimal conditions. Wide-angle X-ray diffractometry and particle size distribution analysis revealed that the scale affecting the improvement of enzymatic digestibility ranged from 10 nm to 1 microm. Field emission scanning electron microscopy depicted that the sulfuric acid-free ethanol cooking induced a pore formation by the removal of part of the lignin and hemicellulose fractions in the size range from a few of tens nanometers to several hundred nanometers.  相似文献   

15.
Hybrid poplar (Populus tremula X P. alba) genetically engineered to express the pine cytosolic glutamine synthetase gene (GS1a) has been previously shown to display desirable field performance characteristics, including enhancements in growth and nitrogen use efficiency. Analysis of wood samples from a 3‐year‐old field trial of three independently transformed GS1a transgenic hybrid poplar lines revealed that, when compared with wild‐type controls, ectopic expression of GS1a resulted in alterations in wood properties and wood chemistry. Included were significant enhancements in wood fibre length, wood density, microfibre angle, per cent syringyl lignin and elevated concentrations of wood sugars, specifically glucose, galactose, mannose and xylose. Total extractive content and acid‐insoluble lignin were significantly reduced in wood of GS1a transgenics when compared with wild‐type trees. Together, these cell wall characteristics resulted in improved wood pulping attributes, including improved lignin solubilization with no concurrent decrease in yield. Trees with increased GS1a expression have improved characteristics for pulp and paper production and hold potential as a feedstock for biofuels production.  相似文献   

16.
Southern yellow pine (softwood) and maple (hardwood) wood decayed for 12 weeks by Antrodiella sp. RK1 had average weight losses of 20 and 19%, respectively, and approximately 34 to 35% lignin loss. The ratio of percentage lignin loss to glucose loss was 3.6 and 2.7 for softwood and hardwood, respectively. There was negligible loss of other wood sugars such as xylose, arabinose, galactose and mannose. Scanning electron microscopy revealed the presence of erosion troughs and bore holes in decayed samples of both softwood and hardwood. Secondary walls were void of lignin, middle lamella and cell corners were extensively decayed. Ca2+ crystals were abundantly present in the areas of decay. Transmission electron micrographs revealed the presence of hyphal sheath and growth of hyphae directly through the cell corners.R.N. Patel and K.K. Rao are with the Department of Microbiology & Biotechnology Center, Faculty of Science, M.S. University of Baroda, Baroda-390 002, India.  相似文献   

17.
Lignin consumption and synthesis of lignolytic enzymes by the fungus Panus (Lentinus) tigrinuscultivated on solid phase (modified and unmodified birch and pine sawdusts) were studied. The fungus grew better on and consumed more readily the birch lignin than the pine wood. Peroxidase activity was higher in the case of pine sawdust; laccase and lignolytic activities, in the case of birth sawdust. Treatment with ammonia or sulfuric acid decreased lignin consumption by this fungus cultivated on either medium. Modification of sawdust by ultrasound increased lignin consumption and may be recommended for accelerating biodegradation of lignocellulose substrates.  相似文献   

18.
A rapid and mild extraction protocol for the preparation of lignin was achieved by microwave-assisted heating in formic acid at 101 °C under atmospheric pressure. In this case, birch lignin was extracted with microwave heating process (ML) in formic acid and characterized by elemental analysis, FTIR, GPC, 1H NMR and 13C–1H HSQC. In addition, the antioxidant activity of the samples was investigated. For comparative study, milled wood lignin (MWL) and lignin extracted with oil bath heating process (OL) were prepared. The results showed that the lignin yield under microwave heating was much higher than that under oil bath heating. A maximal delignification degree (89.77%) was achieved when microwave heating time was 30 min. When double time (60 min) was used under oil bath heating, the delignification degree was 66.11%. The structural characterization showed that the lignin structure of ML did not change dramatically, which is a mixture of GS-type with β-O-4′ ether bond as the major inter-unit linkage. As for antioxidant activity against DPPH, the radical scavenging index (RSI) of ML was 1.20, which was higher than that of MWL (0.53), suggesting that ML exhibited much higher antioxidant activity than MWL.  相似文献   

19.
Wood chips of Pinus radiata softwood were biotreated with the brown rot fungus (BRF) Gloeophyllum trabeum for periods from 4 and 12 weeks. Biodegradation by BRF leads to an increase in cellulose depolymerization with increasing incubation time. As a result, the intrinsic viscosity of holocellulose decreased from 1,487 cm3/g in control samples to 783 and 600 cm3/g in 4- and 12-week decayed wood chips, respectively. Wood weight and glucan losses varied from 6 to 14% and 9 to 21%, respectively. Undecayed and 4-week decayed wood chips were delignified by alkaline (NaOH solution) or organosolv (ethanol/water) processes to produced cellulosic pulps. For both process, pulp yield was 5–10% lower for decayed samples than for control pulps. However, organosolv bio-pulps presented low residual lignin amount and high glucan retention. Chemical pulps and milled wood from undecayed and 4-week decayed wood chips were pre-saccharified with cellulases for 24 h at 50°C followed by simultaneous saccharification and fermentation (SSF) with the yeast Saccharomyces cerevisiae IR2-9a at 40°C for 96 h for bioethanol production. Considering glucan losses during wood decay and conversion yields from chemical pulping and SSF processes, no gains in ethanol production were obtained from the combination of BRF with alkaline delignification; however, the combination of BRF and organosolv processes resulted in a calculated production of 210 mL ethanol/kg wood or 72% of the maximum theoretically possible from that pretreatment, which was the best result obtained in the present study.  相似文献   

20.
Cryptococcus albidus shows delignification activity in nature. It was used for the biopulping of eucalyptus wood (Eucalyptus grandis) to access its potential for industrial application in the pulp and paper industry. Enzyme analysis on days 15, 30, and 60 showed the presence of laccase and xylanase as key enzymes. The production of endo-glucanase (CMCase) and exo-glucanase (FPase) was very low. Scanning electron microscopy (SEM) showed the surface colonization of wood and loosening of wood fibers in C. albidus-treated samples. Fourier-transformation infrared spectroscopy (FT-IR) indicated the chemical modification of eucalyptus wood. Denaturing gradient gel electrophoresis (DGGE) analysis on days 15, 30, and 60 confirmed the presence of C. albidus throughout the experiments. Cryptococcu albidus was able to suppress the growth of a native population. Further, after 60 days both the control and treated eucalyptus wood chips were given kraft pulping treatment. The kappa number of pulp of control wood was 21 and for treated wood was 17. Kappa number is considered a measure of lignin content in wood; hence the treatment of eucalyptus by C. albidus (biopulping) was effective in reducing its lignin content and can be used for biopulping in the pulp and paper industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号