首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A strictly anaerobic bacterium, strain OX39, was isolated with o-xylene as organic substrate and sulfate as electron acceptor from an aquifer at a former gasworks plant contaminated with aromatic hydrocarbons. Apart from o-xylene, strain OX39 grew on m-xylene and toluene and all three substrates were oxidized completely to CO2. Induction experiments indicated that o-xylene, m-xylene, and toluene degradation were initiated by different specific enzymes. Methylbenzylsuccinate was identified in supernatants of cultures grown on o-xylene and m-xylene, and benzylsuccinate was detected in supernatants of toluene-grown cells, thus indicating that degradation was initiated in all three cases by fumarate addition to the methyl group. Strain OX39 was sensitive towards sulfide and depended on Fe(II) in the medium as a scavenger of the produced sulfide. Analysis of the PCR-amplified 16S rRNA gene revealed that strain OX39 affiliates with the gram-positive endospore-forming sulfate reducers of the genus Desulfotomaculum and is the first hydrocarbon-oxidizing bacterium in this genus.  相似文献   

2.
Pseudomonas stutzeri OX1 is able to grow ono-xylene but is unable to grow onm-xylene andp-xylene, which are partially metabolized through theo-xylene degradative pathway leading to the formation of dimethylphenols toxic to OX1.P. stutzeri spontaneous mutants able to grow onm-xylene andp-xylene have been isolated. These mutants soon lose the ability to grow ono-xylene. Data from HPLC analyses and from induction studies suggest that in these mutantsm-xylene andp-xylene could be metabolized through the oxidation of a methyl substituent.P. stutzeri chromosomal DNA is shown to share homology with pWW0 catabolic genes. In the mutant strains the region homologous to pWW0 upper pathway genes has undergone a genomic rearrangement.Abbreviations BADH benzylalcohol dehydrogenase - cat catechol - C23O catechol 2,3-dioxygenase - 2,3-,3,4-,2,4-,2,6-,3,5-2,5-DMP 2,3-,3,4-,2,4-,2,6-,3,5-,2,5-dimethylphenol - 2-MBOH 2-methylbenzyl alcohol - 3-MBOH 3-methylbenzyl alcohol - 4-MBOH 4-methylbenzyl alcohol - m-,p-tol m-,p-toluate - o-,m-,p-xyl o-,m-,p-xylene  相似文献   

3.
Genes for catechol 1,2- and 2,3-dioxygenases were cloned. These enzymes hold important positions in the ortho and meta pathways of the metabolism of aromatic carbons by microbial associations that consume the following volatile organic compounds in pilot minireactors: toluene, styrene, ethyl benzene, o-xylene, m-xylene, and naphthalene. Genes of both pathways were found in an association consuming m-xylene; only genes of the ortho pathway were found in associations consuming o-xylene, styrene, and ethyl benzene, and only genes of the meta pathway were found in associations consuming naphthalene and toluene. Genes of the ortho pathway (C12O) cloned from associations consuming o-xylene and ethyl benzene were similar to corresponding genes located on the pND6 plasmid of Pseudomonas putida. Genes of the ortho pathway from associations consuming o-xylene and m-xylene were similar to chromosomal genes of P. putida. Genes of the meta pathway (C23O) from associations consuming toluene and naphthalene were similar to corresponding genes formerly found in plasmids pWWO and pTOL.__________Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 3, 2005, pp. 298–302.Original Russian Text Copyright © 2005 by Khomenkov, Shevelev, Zhukov, Kurlovich, Zagustina, Popov.  相似文献   

4.
A range of species of four mixed bacterial cultures was studied by molecular systematics methods with the use of 16S rRNA genes. The cultures had been developed for application in minireactors, to degrade volatile organic compounds (VOCs): ethyl benzene, m-xylene, styrene, and o-xylene. A sample of 30 plasmid rDNA clones was obtained for each of the mixed cultures. The clones were analyzed by RFLP according to two restriction sites. Major variants of the 16S-rDNA sequences, corresponding to the most abundant species, were determined for each association. Sequencing of four clones of predominant 16S-rDNAs showed that the culture consuming ethyl benzene was dominated by Pseudomonas fluorescens; o-xylene, by Achromobacter xylosoxydans; styrene, by Pseudomonas veronii; and m-xylene, by Delftia acidovorans. Minor components of all four cultures were generally similar. They included species of the genera Sphingobacter, Rhizobium, Mesorhizobium, Pedobacter, and Paenibacillus. Sampling sequencing of genes for 16S rRNA cloned from total genomic DNA allowed quantitative determination of the composition of actual bacterial associations consuming VOCs in minireactors.Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 2, 2005, pp. 176–184.Original Russian Text Copyright © 2005 by Khomenkov, Shevelev, Zhukov, Kurlovich, Zagustina, Popov.  相似文献   

5.
Yu H  Kim BJ  Rittmann BE 《Biodegradation》2001,12(6):455-463
Several types of biodegradation experiments with benzene, toluene, or p-xylene show accumulation of intermediates by Pseudomonas putida F1. Under aerobic conditions, the major intermediates identified for benzene, toluene, and p-xylene are catechol, 3-methylcatechol, and 3,6-dimethylcatechol, respectively. Oxidations of catechol and 3-methylcatechol are linked to biomass synthesis. When oxygen is limited in the system, phenol (from benzene) and m-cresol and o-cresol (from toluene) accumulate.  相似文献   

6.
A co-culture of two Pseudomonas putida isolates was enriched from sediment on a mixture of benzene, toluene, ethylbenzene, m-xylene, p-xylene, and o-xylene. The co-culture readily degraded each of the compounds present. Benzene, toluene, and ethylbenzene were used as growth substrates by one isolate, while toluene, m-xylene, and p-xylene were used as growth substrates by the other. Neither isolate could grow on o-xylene, but it was removed in the presence of the other compounds presumably by co-metabolism. The findings presented here support other reports in which constructed communities were effectively used to degrade blends of between two and four of the components of BTEX. However, here the co-culture of two P. putida isolates effectively degraded a complete BTEX stream containing all six of the components. Received: 4 September 2001 / Accepted: 19 October 2001  相似文献   

7.
During the course of an investigation of the microbial assimilation of aromatic hydrocarbons, several strains were found to produce a large amount of cumic acid from p-cymene.

Five strains, S449B1, B2, B3, B4 and B6, were isolated from soil with the aromatic hydrocarbon substrates. They all assimilated both p-cymene and cumene. The strain S449B3 grew also on p-xylene, and S449B6 on p-xylene, toluene, and ethylbenzene.

They were all shown to be capable of producing an ultraviolet-absorbing substance from p-cymene. This substance was isolated in crystalline form and identified as cumic acid by infrared absorption spectrum and other observations.

The superior strain, S449B6, produced the acid as much as 1000 mg/1 in shaking culture at 30°C after 24 hours. The yields were increased up to approximately 1700 mg/1 after further investigations. Addition of calcium carbonate and considerable agitation were favorable conditions for the acid production.

The taxonomical studies of these strains were carried out, and they were all identified as closely resembling Pseudomonas desmolytica.  相似文献   

8.
Benzene, toluene, ethylbenzene and xylene (BTEX) substrate interactions for a mesophilic (25°C) and thermophilic (50°C) toluene-acclimatized composted pine bark biofilter were investigated. Toluene, benzene, ethylbenzene, o-xylene, m-xylene and p-xylene removal efficiencies, both individually and in paired mixtures with toluene (1:1 ratio), were determined at a total loading rate of 18.1 g m–3 h–1 and retention time ranges of 0.5–3.0 min and 0.6–3.8 min for mesophilic and thermophilic biofilters, respectively. Overall, toluene degradation rates under mesophilic conditions were superior to degradation rates of individual BEX compounds. With the exception of p-xylene, higher removal efficiencies were achieved for individual BEX compounds compared to toluene under thermophilic conditions. Overall BEX compound degradation under mesophilic conditions was ranked as ethylbenzene >benzene >o-xylene >m-xylene >p-xylene. Under thermophilic conditions overall BEX compound degradation was ranked as benzene >o-xylene >ethylbenzene >m-xylene >p-xylene. With the exception of o-xylene, the presence of toluene in paired mixtures with BEX compounds resulted in enhanced removal efficiencies of BEX compounds, under both mesophilic and thermophilic conditions. A substrate interaction index was calculated to compare removal efficiencies at a retention time of 0.8 min (50 s). A reduction in toluene removal efficiencies (negative interaction) in the presence of individual BEX compounds was observed under mesophilic conditions, while enhanced toluene removal efficiency was achieved in the presence of other BEX compounds, with the exception of p-xylene under thermophilic conditions.  相似文献   

9.
Soils contaminated with o-xylene were more difficult to bioremediate than those contaminated with other BTEX hydrocarbons (benzene, toluene, ethylbenzene, m-xylene and p-xylene). In order to identify microorganisms responsible for o-xylene degradation in soil, microbial community structure analyses were carried out with two soil samples in the presence of o-xylene and mineral nutrients. In two different soil samples, Rhodococcus opacus became abundant. We were also able to isolate o-xylene degrading Rhodococcus species from these soil samples. A primer set was developed to specifically detect a cluster of this Rhodococcus group including isolated Rhodococcus strains, Rhodococcus opacus and Rhodococcus koreensis. The growth of this bacterial group in an o-xylene-contaminated soil was followed by competitive PCR (cPCR). The decrease in o-xylene clearly paralleled the growth of the Rhodococcus group.  相似文献   

10.
ABSTRACT

A laboratory-scale biofilter unit packed with a mixture of compost, sugarcane bagasse, and granulated activated carbon (GAC) in the ratio of 55:30:15 by weight was used for a biofiltration study of air stream containing benzene, toluene, ethylbenzene, and o-xylene (BTEX). The effect of superficial velocity on mass transfer coefficient for the packing was studied by maintaining gas flow rates of 3, 4, 5, 6, and 8 L min?1 for inlet concentrations of 0.1, 0.4, and 0.8 g m?3 for each of benzene, toluene, ethylbenzene, and o-xylene. The maximum elimination capacity was found to be 20.92, 22.72, 20.73, and 18.94 g m?3 h?1 for BTEX, respectively, for stated flow rates. Removal efficiency of BTEX decreased from 99% to 71% for increasing inlet concentration from 0.1 to 0.8 g m?3. Gas film mass transfer coefficient predicted by modified Onda's equation was within ±10% of the experimental values.  相似文献   

11.
The pathways for degradation of aromatic hydrocarbons are constantly modified by a variety of genetic mechanisms. Genetic studies carried out with Pseudomonas stutzeri OX1 suggested that the tou operon coding for toluene o-xylene monooxygenase (ToMO) was recently recruited into a preexisting pathway that already possessed the ph operon coding for phenol hydroxylase (PH). This apparently resulted in a redundancy of enzymatic activities, because both enzymes are able to hydroxylate (methyl)benzenes to (methyl)catechols via the intermediate production of (methyl)phenols. We investigated the kinetics and regioselectivity of toluene and o-xylene oxidation using Escherichia coli cells expressing ToMO and PH complexes. Our data indicate that in the recombinant system the enzymes act sequentially and that their catalytic efficiency and regioselectivity optimize the degradation of toluene and o-xylene, both of which are growth substrates. The main product of toluene oxidation by ToMO is p-cresol, the best substrate for PH, which catalyzes its transformation to 4-methylcatechol. The sequential action of the two enzymes on o-xylene leads, via the intermediate 3,4-dimethylphenol, to the exclusive production of 3,4-dimethylcatechol, the only dimethylcatechol isomer that can serve as a carbon and energy source after further metabolic processing. Moreover, our data strongly support a metabolic explanation for the acquisition of the ToMO operon by P. stutzeri OX1. It is possible that using the two enzymes in a concerted fashion confers on the strain a selective advantage based on the ability of the microorganism to optimize the efficiency of the use of nonhydroxylated aromatic hydrocarbons, such as benzene, toluene, and o-xylene.  相似文献   

12.
Toluene o-xylene monooxygenase (ToMO) and phenol hydroxylase (PH) of Pseudomonas stutzeri OX1 act sequentially in a recombinant upper pathway for the degradation of aromatic hydrocarbons. The catalytic efficiency and regioselectivity of these enzymes optimize the degradation of growth substrates like toluene and o-xylene. For example, the sequential monooxygenation of o-xylene by ToMO and PH leads to almost exclusive production of 3,4-dimethylcatechol (3,4-DMC), the only isomer that can be further metabolized by the P. stutzeri meta pathway. We investigated the possibility of producing ToMO mutants with modified regioselectivity compared with the regioselectivity of the wild-type protein in order to alter the ability of the recombinant upper pathway to produce methylcatechol isomers from toluene and to produce 3,4-DMC from o-xylene. The combination of mutant (E103G)-ToMO and PH increased the production of 4-methylcatechol from toluene and increased the formation of 3,4-DMC from o-xylene. These data strongly support the idea that the products and efficiency of the metabolic pathway can be controlled not only through mutations that increase the catalytic efficiency of the enzymes involved but also through tuning the substrate specificity and regioselectivity of the enzymes. These findings are crucial for the development of future metabolic engineering strategies.  相似文献   

13.
Toluene-o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 has been shown to degrade all chlorinated ethenes individually and as mixtures. Here, DNA shuffling of the alpha hydroxylase fragment of ToMO (TouA) and saturation mutagenesis of the TouA active site residues I100, Q141, T201, F205, and E214 were used to enhance the degradation of chlorinated aliphatics. The ToMO mutants were identified using a chloride ion screen and then were further examined by gas chromatography. Escherichia coli TG1/pBS(Kan)ToMO expressing TouA saturation mutagenesis variant I100Q was identified that has 2.8-fold better trichloroethylene (TCE) degradation activity (apparent V max of 1.77 nmol min−1 mg−1 protein−1 vs 0.63 nmol min−1 mg−1 protein−1). Another variant, E214G/D312N/M399V, has 2.5-fold better cis-1,2-dichloroethylene (cis-DCE) degradation activity (apparent V max of 8.4 nmol min−1 mg−1 protein−1 vs 3.3 nmol min−1 mg−1 protein−1). Additionally, the hydroxylation regiospecificity of o-xylene and naphthalene were altered significantly for ToMO variants A107T/E214A, T201G, and T201S. Variant T201S produced 2.0-fold more 2,3-dimethylphenol (2,3-DMP) from o-xylene than the wild-type ToMO, whereas variant A107T/E214A had 6.0-fold altered regiospecificity for 2,3-DMP formation. Variant A107T/E214A also produced 3.0-fold more 2-naphthol from naphthalene than the wild-type ToMO, whereas the regiospecificity of variant T201S was altered to synthesize 3.0-fold less 2-naphthol, so that it made almost exclusively 1-naphthol (96%). Variant T201G was more regiospecific than variants A107T/E214A and T201S and produced 100% 3,4-DMP from o-xylene and >99% 1-naphthol from naphthalene. Hence, ToMO activity was enhanced for the degradation of TCE and cis-DCE and for the regiospecific hydroxylation of o-xylene and naphthalene through DNA shuffling and saturation mutagenesis.  相似文献   

14.
A strictly anaerobic enrichment culture was obtained with p-xylene as organic substrate and sulfate as electron acceptor from an aquifer at a former gasworks plant contaminated with aromatic hydrocarbons. p-Xylene was completely oxidized to CO2. The enrichment culture depended on Fe(II) in the medium as a scavenger of the produced sulfide. 4-Methylbenzylsuccinic acid and 4-methylphenylitaconic acid were identified in supernatants of cultures indicating that degradation of p-xylene was initiated by fumarate addition to one of the methyl groups. Therefore, p-xylene degradation probably proceeds analogously to toluene degradation by Thauera aromatica or anaerobic degradation pathways for o- and m-xylene.  相似文献   

15.
Summary An anaerobic enrichment culture that degraded 0.4 mmol/l per day of o-phenylphenol was selected from sediment of a waste water pond of a sugar factory. From the consortium an o-phenylphenol-degrading bacterium, strain B10, was isolated. Strain B10 could not degrade other aromatic substances, including phenylacetic acid, benzoate, o-hydroxybenzoate, p-hydroxybenzoate and phenol. Best growth was observed with glucose, pyruvate, lactate, methanol and H2/CO2 as substrates. o-Phenylphenol was slowly degraded if supplied as the only carbon source and was cometabolized in the presence of >5 mmol/l glucose. Strain B10 has not yet been assigned to a known species or family.  相似文献   

16.
A bacterial consortium with complementary metabolic capabilities was formulated and specific removal rates were 0.14, 0.35, 0.04, and 0.39 h–1 for benzene, toluene, o-xylene, and m,p-xylene, respectively. When immobilized on a porous peat moss biofilter, removal of all five (= BTX) components was observed with rates of 1.8–15.4 g m–3 filter bed h–1. Elimination capacities with respect to the inlet gas concentrations of BTX and airflow rates showed diffusive regimes in the tested concentration range of (0.1–5.3 g m–3) and airflow (0.55–1.82 m3 m–2 h–1) except for o-xylene which reached its critical gas concentration at 0.3 g m–3.  相似文献   

17.
BTEX catabolism interactions in a toluene-acclimatized biofilter   总被引:1,自引:0,他引:1  
BTEX substrate interactions for a toluene-acclimatized biofilter consortium were investigated. Benzene, ethylbenzene, o-xylene, m-xylene and p-xylene removal efficiencies were determined at a loading rate of 18.07 g m−3 h−1 and retention times of 0.5–3.0 min. This was also repeated for toluene in a 1:1 (m/m) ratio mixture (toluene: benzene, ethylbenzene, or xylene ) with each of the other compounds individually to obtain a final total loading of 18.07 g m−3 h−1. The results obtained were modelled using Michaelis–Menten kinetics and an explicit finite difference scheme to generate v max and K m parameters. The v max/K m ratio (a measure of the catalytic efficiency, or biodegradation capacity, of the reactor) was used to quantify substrate interactions occurring within the biofilter reactor without the need for free-cell suspended and monoculture experimentation. Toluene was found to enhance the catalytic efficiency of the reactor for p-xylene, while catabolism of all the other compounds was inhibited competitively by the presence of toluene. The toluene-acclimatized biofilter was also able to degrade all of the other BTEX compounds, even in the absence of toluene. The catalytic efficiency of the reactor for compounds other than toluene was in the order: ethylbenzene>benzene>o-xylene>m-xylene>p-xylene. The catalytic efficiency for toluene was reduced by the presence of all other tested BTEX compounds, with the greatest inhibitory effect being caused by the presence of benzene, while o-xylene and p-xylene caused the least inhibitory effect. This work illustrated that substrate interactions can be determined directly from biofilter reactor results without the need for free-cell and monoculture experimentation. Received: 13 April 2000 / Received revision: 20 July 2000 / Accepted: 27 July 2000  相似文献   

18.
Rhodococcus sp. strain DK17 was isolated from soil and analyzed for the ability to grow on o-xylene as the sole carbon and energy source. Although DK17 cannot grow on m- and p-xylene, it is capable of growth on benzene, phenol, toluene, ethylbenzene, isopropylbenzene, and other alkylbenzene isomers. One UV-generated mutant strain, DK176, simultaneously lost the ability to grow on o-xylene, ethylbenzene, isopropylbenzene, toluene, and benzene, although it could still grow on phenol. The mutant strain was also unable to oxidize indole to indigo following growth in the presence of o-xylene. This observation suggests the loss of an oxygenase that is involved in the initial oxidation of the (alkyl)benzenes tested. Another mutant strain, DK180, isolated for the inability to grow on o-xylene, retained the ability to grow on benzene but was unable to grow on alkylbenzenes due to loss of a meta-cleavage dioxygenase needed for metabolism of methyl-substituted catechols. Further experiments showed that DK180 as well as the wild-type strain DK17 have an ortho-cleavage pathway which is specifically induced by benzene but not by o-xylene. These results indicate that DK17 possesses two different ring-cleavage pathways for the degradation of aromatic compounds, although the initial oxidation reactions may be catalyzed by a common oxygenase. Gas chromatography-mass spectrometry and 300-MHz proton nuclear magnetic resonance spectrometry clearly show that DK180 accumulates 3,4-dimethylcatechol from o-xylene and both 3- and 4-methylcatechol from toluene. This means that there are two initial routes of oxidation of toluene by the strain. Pulsed-field gel electrophoresis analysis demonstrated the presence of two large megaplasmids in the wild-type strain DK17, one of which (pDK2) was lost in the mutant strain DK176. Since several other independently derived mutant strains unable to grow on alkylbenzenes are also missing pDK2, the genes encoding the initial steps in alkylbenzene metabolism (but not phenol metabolism) appear to be present on this approximately 330-kb plasmid.  相似文献   

19.
The inhibitory effect of creosote compounds on the aerobic degradation of benzene was studied in microcosm experiments. A total removal of benzene was observed after twelve days of incubation in microcosms where no inhibition was observed. Thiophene and benzothiophene, two heterocyclic aromatic compounds containing sulfur (S-compounds), had a significant inhibitory effect on the degradation of benzene, but also an inhibitory effect of benzofuran (an O-compound) and 1-methylpyrrole (a N-compound) could be observed, although the effect was weaker. The NSO-compounds also had an inhibitory effect on the degradation of p-xylene, o-xylene, and naphthalene, while they only had a weak influence on the degradation of 1-methylnaphthalene, o-cresol and 2,4-dimethylphenol. The phenolic compounds seemed to have a weak stimulating effect on the degradation of benzene whereas the monoaromatic hydrocarbons and the naphthalenes had no significant influence on the benzene degradation. The inhibitory effect of the NSO-compounds on the aerobic degradation of benzene could be identified as three different phenomena. The lag phase increased, the degradation rate decreased, and a residual concentration of benzene was observed in microcosms when NSO-compounds were present. The results show that NSO-compounds can have a potential inhibitory effect on the degradation of many creosote compounds, and that inhibitory effects in mixtures can be important for the degradation of different compounds.Abbreviations ben benzene - bf benzofuran - bt benzothiophene - dmp 2,4-dimethylphenol - GC gas chromatograph - ind indole - mnap 1-methylnaphthalene - MAHs monoaromatic hydrocarbons - mp 1-methylpyrrole - nap naphthalene - NSO-compounds heterocyclic aromatic compounds containing nitrogen, sulphur or oxygen - o-cre o-cresol - o-xyl o-xylene - PAHs polyaromatic hydrocarbons - phe phenol - p-xyl p-xylene - pyr pyrrole - thi thiophene - qui quinoline  相似文献   

20.
Many strains of the hydrocabon-utilizing yeasts were isolated from various kinds of natural sources by accumulation culture.

Among those yeasts, two strains, S315YI and S131YI, which were identified with Candida tropilcais, assimilated hydrocarbons abundantly. As for type cultures, it was found that many strains of them could utilize hydrocarbons too, especially the strains which belonged to Genus Candida. However, as regards to the ability in utilizing hydrocarbons, no yeast from type culture collections utilized hydrocarbons better than the yeasts newly isolated from nature. Addition of the natural nutrients such as corn steep liquor to the cultural broth of Strain S315Y1 showed no effect on the production of yeast cells.

The yeast Strain S315Y1 assimilated the higher boiling points fraction of n-paraffins in comparison with the hydrocarbon-utilizing bacterium, Pseudomonas aeruginosa S7B1, which had been reported by the authors. Ribonucleic acid contents of dried cells of the yeast Strain S315Y1 and S131Y1 were 5.3 and 4.4% respectively by Schmidt-Thannhauser-Schneider method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号