首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the course of our investigations on the metabolism of d-biotin by microorganism, it has been found that some strains of fungi belonging to the genera Rhodotorula, Penicillium and Endomycopsis, are able to degrade d-biotin oxidatively into various biotin vitamers. The present work was undertaken to characterize these vitamers. The vitamers formed were separated by the ion exchange column chromatography, into Fraction A (d-biotin sulfoxide), Fraction B (unknown vitamer II), Fraction C (d-biotin) and Fraction D (unknown vitamer I). Rf values of vitamer I and vitamer II were found to be different from those of the known biotin vitamers. The vitamers I and II did not support the growth of Lactobacillus arabinosus and Saccharomyces cerevisiae, but did support that of Bacillus subtilis. This degradation reaction occurred rather favorably in high aerobic condition.  相似文献   

2.
The utilization of hydrocarbons by microorganisms was studied in many fields, but the production of biotin vitamers by hydrocarbon-utilizing bacteria has never been reported.

We have screened many hydrocarbon-utilizing bacteria which produce biotin vitamers in the culture broth. The effects of cultural conditions on biotin vitamers production by strain 5–2, tentatively assigned to the genus Pseudomonas, were studied.

More than 98% of biotin vitamers produced from hydrocarbons by strain 5–2 was chromatographically determined as desthiobiotin. As nitrogen source, natural nutrients were more effective than inorganic nitrogen sources. The production of biotin vitamers was increased under the condition of good aeration. Exogenous pimelic or azelaic acid enhanced biotin vitamers production by strain 5–2.

The production of biotin vitamers from n-alkanes, n-alkenes or glucose by an isolated bacterium, strain 5-2, tentatively assigned to the genus Pseudomonas, was investigated. Among these carbon sources, n-undecane was the most excellent for biotin vitamers production.

The biosynthetic pathway of biotin vitamers, especially desthiobiotin, from n-undecane was also studied. It was found by thin-layer and gas-liquid chromatographical methods that pimelic and azelaic acids were the main acid components in n-undecane culture.

This result, together with previously reported enhancement of biotin vitamers production by these acids, suggests that pimelic and azelaic acids may be the intermediates of biotin vitamers biosynthesis from n-undecane.  相似文献   

3.
The accumulation of biotin-vitamers in the culture media of a large number of microorganisms (about 700 strains) was studied. The contents of the biotin-vitamers were quantitatively determined by microbiological assays with Lactobacillus arabinosus and Saccharomyces cerevisiae.

It was found that large amounts of biotin-vitamers were accumulated by various microorganisms such as Streptomyces, molds and bacteria, and that the yield of biotin-vitamers was enhanced by the addition of pimelic acid or azelaic acid to the media. It was also found that the main portion of the vitamers accumulated by many microorganisms did not support the growth of Lactobacillus arabinosus, while it did support that of Saccharomyces cerevisiae. The small amounts of true biotin were observed in the culture media of various Streptomyces and molds, but hardly in the culture media of bacteria.

The identification of biotin-vitamers accumulated by various microorganisms is described, and the distribution of the vitamers in microorganisms is also described.

The results presented in this paper show that the main component of the vitamers accumulated by many microorganisms is identified as desthiobiotin by anion exchange column chromatography, paper chromatography and chemical analysis. Small amounts of fraction B (unidentified vitamers) and Fraction D (biotin) were also detected in the culture media of various molds and Streptomyces. However, these fractions were not observed in the culture media of any bacteria tested.

It was also found that large amounts of an unknown biotin-vitamer was accumulated by various bacteria. The vitamer was avidin-uncombinable, and, from the paper electrophoretic studies, it was assumed that the vitamer might be an analogue of pelargonic acid.  相似文献   

4.
During the course of the study on biotin vitamers production by a hydrocarbon-utilizing bacterium, strain 5–2 (Pseudomonas sp.), it was found that crude RNA-alkali-hydrolyzate from yeast increased the accumulaion of biotin vitamers, most of which was determined as desthiobion, and that adenine in the crude RNA-alkali-hydrolyzate was a potent stimulator. Effect of adenine on biotin vitamers accumulation was observed in the medium with either hydrocarbon or glucose as a sole carbon source. The accumulation of total biotin vitamers by some other bacteria was also increased by adenine but that of true biotin was scarcely increased or inhibited by adenine.

The role of adenine on the accumulation of biotin vitamers was investigated with non-proliferating cells of strain 5–2, and it was supposed that adenine would not only inhibit the accumulation of true biotin but, as a result, cause the large accumulation of biotin vitamers which might be intermediates of biotin synthesis. When the medium was supplemented with excess biotin, complete repression occurred even in the presence of adenine.  相似文献   

5.
Biotin derivatives with biotin activity for some biotin-requiring microorganisms have been isolated in crystalline form from the culture filtrate of strain 194, identified as Rhodotorula flava. The crystalline vitamer was identified as d-biotinamide.  相似文献   

6.
The biotin activity of beet and lactose molasses against the test strain Saccharomyces cerevisiae 225 by auxanographic method was evaluated. The level of lactose molasses biotin activity is almost twice as high as that obtained in the case of beet molasses. The results of bioautography with test strains Saccharomyces cerevisiae 225 and Lactobacillus arabinosus 17-5 indicate the qualitative composition of biotin derivatives (vitamers) in both molasses. Depending on the various technological steps e.g. sterilization or clarification one may find differences in the content and qualitative composition of biotin vitamers.  相似文献   

7.
Filter-paper disks of uniform size were chemically modified by the introduction of isonitrile functional groups. Avidin was then covalently linked to the disks in a four-component condensation reaction involving disk isonitrile groups and avidin carboxyl groups in the presence of a water-soluble aldehyde and an amine. Quantitative assay of unknown d-biotin solutions could be conveniently carried out with such avidin-cellulose disks by a two-step procedure: (i) immersion in the unknown sample, and (ii) exposure to an excess of radioactive biotin. Based on the known total capacity of the disks for biotin, the amount of unlabeled biotin extracted from solution by avidin-cellulose disks could be easily estimated.  相似文献   

8.
The conditions for biotin production were investigated. Urea was a more effective nitrogen source than ammonium chloride and ammonium sulfate. About 60% conversion from dl-cis-tetrahydro-2-oxo-4-n-pentyl-thieno-(3,4-d)-imidazoline (dl-TOPTI) to biotinol and biotin occurred using Corynebacterium sp. B–321. Strain M–6318 which derived from B–321 as a mutant incapable of assimilating n-alkane produced large amounts of dl-biotin from dl-TOPTI. The inability of the microbe to assimilate n-alkane resulted in repression of biotin degradation. Maximum conversion (80%) was obtained by growing cultures of strain M–6318 in the constant presence of n-paraffin.  相似文献   

9.
The effect of the overexpression of the bioABFCD operon on the biotin biosynthetic pathway was investigated in an Escherichia coli K12 bioR mutant with a chromosomal deletion for the biotin operon. When transformed with a multicopy number plasmid containing bioABFCD, this strain synthetized 10,000 times more biotin than a wild-type E. coli strain. In order to further increase biotin production, the bioA and bioB operons were subcloned into plasmids with stronger promoters and in some cases optimal ribosome binding sites. The new constructions led to the accumulation of large amounts of soluble Bio proteins (although not BioC) but did not improve biotin production. In all the constructed strains, BioA, BioD, and BioB activities were greatly amplified but these activitie did not correlate with the level of protein syntthesis. These strains accumulated only low levels of vitamers, auggesting that the major limiting step for higher biotin production occurs upstream from the first intermediate of the Bio pathway we assayed (7,keto-8-aminopelargonic acid). As BioC overproduction was shown to impair cell growth, we could not determine if this early step of pathway was limiting. Correspondence to: S. Lévy-Schil  相似文献   

10.
To construct a genetically stable strain of Serratia marcescens for d-biotin production, we integrated the mutated biotin-biosynthetic (bio) genes into the chromosome of a d-biotin-producing strain of S. marcescens Sr41. Temperature-sensitive suicide vectors consisting of the Tn5 element were used as the integration tool. Extra bio genes carried between the Tn5 termini were integrated into the chromosome of strain ETA23, a d-biotin-producing mutant. Resultant integrants produced 120 mg of d-biotin per l of a medium containing sucrose and urea whereas ETA23 produced d-biotin at 55 mg/l in the same medium. The integrated bio genes were stably maintained on the chromosome of ETA23 for 100 generations.  相似文献   

11.
A quantitative screening procedure for biotin and biotin vitamer production was conducted on 129 yeast strains able to grow in a biotin-free medium. Production of biotin and biotin vitamers varied considerably from strain to strain even within a species. The best producers of biotin were strains of Sporobolomyces roseus and Rhodotorula rubra whilst strains of Rhodotorula rubra and Yarrowia lipolytica produced the largest amounts of vitamers.  相似文献   

12.
13.
Biotin-vitamers were synthesized from glutaric acid by resting cells of certain strains of Agrobacterium. Pimelic acid, which has been known as a biotin precursor in many microorganisms, was not effective at all to this species. Optimum conditions for the biosynthesis of the vitamers by resting cells of Agrobacterium radiobacter IAM 1526 were investigated. L-Lysine was also effective, but the rate of the biosynthesis of biotin-vitamers from L-lysine was one-half that from glutaric acid. The vitamer synthesized was bioautographically identified as desthiobiotin. It was confirmed that 14C-labelled glutaric acid was incorporated into the desthiobiotin molecule.  相似文献   

14.
Brev. lactofermentum rapidly took up biotin from culture medium and stored it in the cells. The saturation level of the stored biotin (3.8 × 104 molecules/cell) exceeded the level required for the maximum growth by ten times, and the minimum level (1.3 × 103 molecules/cell) was the most adequate to the accumulation of l-glutamic acid. The stored cellular biotin over the minimum level was metabolically available in the subsequent culture lacking in supplemented biotin. The cellular biotin was gradually reduced to the minimum level with the multiplication of the cells, and them the accumulation of l-glutamic acid was observed. This relation between the level of cellular biotin and the accumulation of l-glutamic acid was impaired by the addition of Tween 60 or some saturated fatty acid. In the presence of biotin and Tween 60 the biotin-saturated cells turned into cells capable of accumulating l-glutamic acid keeping the maximum level; and in the same medium the cells having the minimum amount of biotin took up biotin and then were saturated with it, and yet the cells preserved the acid-accumulating property. It was confirmed with the use of bioautographic technique and avidin test that the biotin released from the cells by acid hydrolysis was identical with authentic d-biotin.  相似文献   

15.
1. An unknown biotin vitamer was obtained in high yields in culture filtrates of Penicillium chrysogenum. 2. Production of this vitamer and desthiobiotin is controlled by the biotin concentration in the medium. 3. The unknown vitamer becomes labelled when the organism is grown in the presence of radioactive pimelic acid. 4. Chromatographic procedures were developed for the purification of the radioactive vitamer. 5. The vitamer is extremely stable in concentrated acid but gives rise to new vitamers under certain conditions. 6. The intermediate role of this vitamer in the synthesis of biotin is discussed.  相似文献   

16.
d-Oxybiotin (X) was synthesized from d-glucose and showed biotin activity for some microorganisms.  相似文献   

17.
Birnbaum, Jerome (University of Cincinnati, Cincinnati, Ohio), and Herman C. Lichstein. Metabolism of biotin and analogues of biotin by microorganisms. III. Degradation of oxybiotin and desthiobiotin by Lactobacillus plantarum. J. Bacteriol 92:920-924. 1966.-Lactobacillus plantarum growing in excess oxybiotin degraded a portion to products not utilizable by Saccharomyces cerevisiae. The loss of activity for the yeast suggested that no vitamers of oxybiotin accumulated during the degradation. The initiation of degrading activity was controlled by the pH of the growth medium and appeared during early stationary phase. Only cells grown in excess oxybiotin could degrade this biotin analogue. Nonproliferating cells grown previously in excess oxybiotin were able to convert biotin to vitamers (active for the yeast) as well as to degrade oxybiotin. Those grown in excess biotin also developed the ability to degrade oxybiotin as well as to convert biotin; however, in this case, the enzymes degenerated more rapidly. Cells grown with excessive amounts of either material were able to degrade desthiobiotin to products not available for the yeast. Both biotin conversion and oxybiotin degradation were found to have the same requirements for Mg and Mn ions. It was concluded that conversion of biotin to vitamers, and the degradation of oxybiotin or desthiobiotin are functions of the same on closely related enzyme systems.  相似文献   

18.
The hydrocarbon utilizing yeast Yarrowia lipolyyica NCYC 1421 produces biotin and its vitamers when grown on glucose in biotin-free media. Levels of production can be influenced by the medium composition. Growth in the presence of longchained fatty acids greatly increases biotin vitamer production. The biotin vitamers produced are normally dethiobiotin and 7-keto, 8-aminopelargonic acid. The addition of succinic acid at 0.5 g per litre causes the vitamer 7, 8-diaminopelargonic acid to be produced at high levels. The biotin antagonist α-dehydrobiotin inhibits the growth of Yarrowia lipolytica . Mutants can be readily isolated which show resistance to α-dehydrobiotin, but these do not produce greater amounts of biotin or its vitamers.  相似文献   

19.
Pseudomonas putida strain DSM 84 produces N-carbamyl-d-amino acids from the corresponding d-5-monosubstituted hydantoins. The sequence of the d-hydantoinase gene from this strain (GenBank accession number L24157) was used to develop a DNA probe of 122 base pairs (bp) that could detect d-hydantoinase genes in other bacterial genera by DNA and by colony hybridization. Under conditions tolerating 32% mismatch, the probe was specific for all strains that expressed d-hydantoinase activity. These include Pseudomonadaceae of all rRNA groups, and bacteria belonging to the genera Agrobacterium, Serratia, Corynebacterium, and Arthrobacter. Environmental sampling was simulated by screening a mixture of unknown microorganims from commercial inocula for the biodegradation of industrial, municipal and domestic wastes. The 122-bp probe was specific for microorganisms that subsequently demonstrated d-hydantoinase activity. Bacterial species from four different genera were detected, which were Pseudomonas, Klebsiella, Enterobacter, and Enterococcus.  相似文献   

20.
Birnbaum, Jerome (University of Cincinnati, Cinncinati, Ohio), and Herman C. Lichstein. Metabolism of biotin and analogues of biotin by microorganisms. II. Further studies on the conversion of d-biotin to biotin vitamers by Lactobacillus plantarum. J. Bacteriol. 92:913-919. 1966.-Lactobacillus plantarum growing in excess biotin converts a portion to two vitamers (combinable and uncombinable with avidin) not utilizable for growth. These were detected by differential yeast-lactobacillus assay. In the present study, suspensions of 12- and 72-hr cells showed no converting activity. Vitamer formation by nonproliferating 24-hr cells required glucose and exhibited a lag; 17-hr cells showed neither a lag nor a glucose requirement. Iodoacetate and chloramphenicol inhibited vitamer formation by 24-hr cells, but had no effect on 17-hr cells. Addition of hydrolyzed casein or preincubation in biotin decreased the lag and enhanced vitamer formation in 24-hr cells, but had no effect in 17-hr cells. Apparently, 17-hr cells contain the converting enzymes which degenerate as growth proceeds; the lag exhibited by 24-hr cells represents the time necessary to reform the enzymes. Equal amounts of the two vitamers were formed in 17-hr cells; only the avidin-combinable form was produced initially by 24-hr cells, unless hydrolyzed casein was present. Electrophoresis revealed that the avidin-combinable vitamer has the same charge as biotin,whereas the uncombinable form possesses both positive and negative groups. Column chromatography was used to separate the avidin uncombinable material from biotin and the avidin-combinable form. L. plantarum was unable to accumulate the avidin-uncombinable vitamer under conditions permitting good biotin accumulation. It was concluded that L. plantarum sequentially converts biotin to avidin-combinable and -uncombinable vitamers, the latter being impermeable to the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号