首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A low cost synthetic medium producing large quantities of α-amylase has been developed. Bacillus licheniformis TCRDC-B13 isolated from soil was used for α-amylase production. The α-amylase enzyme of this strain showed excellent stability at high temperatures and over a wide pH range. The low cost medium produced 5 times more enzyme than the high cost synthetic medium (using yeast extract and peptone) in shake flasks. In a 2.6-l fermentor, the enzyme production further doubled.  相似文献   

2.
An acid α-amylase hyperproducing strain, designated as MIR-61, was isolated in a screening procedure from South American soil samples. MIR-61, a 60°C thermoresistant strain, was identified using 98 biochemical and morphological tests and characterized as Bacillus licheniformis by numerical taxonomy. Batch cultures of B. licheniformis MIR-61 showed extracellular α-amylase and α-glucosidase activities during the exponential growth phase. The production of α-amylase was studied at free and constant pH values at 37 and 45°C. Maximum α-amylase activity (4,767 kU/dm3 in a liquid medium) was detected at 45°C at a constant pH (7.0) in the late exponential phase. The α-amylase production by B. licheniformis MIR-61 is 10 to 300 times higher than the enzyme production reported in strains of the same species. Optimum α-amylase activity was found at 50 to 67°C in an acid pH range from 5.5 to 6.0. These properties would allow its use in starch industry processes.  相似文献   

3.
The alfalfa weevil Hypera postica is a serious economic pest in most alfalfa grown in many countries worldwide. Digestive α-amylase and pectinase activities of larvae were investigated using general substrates. Midgut extracts from larvae showed an optimum activity for α-amylase against starch at acidic pH (pH 5.0). α-Amylase from larval midgut was more stable at mildly acidic pH (pH 5–6) than highly acidic and alkaline pH. The enzyme showed its maximum activity at 35°C. α-Amylase activity was significantly decreased in the presence of Ca2+, Mg2+ and sodium dodecylsulfate. On the contrary, K+ and Na+ did not significantly affect the enzyme activity. Zymogram analysis revealed the presence of one band of α-amylase activity in in-gel assays. Pectinase activity was assayed using agarose plate and colorimetric assays. Optimal pH for pectinase activity in the larval midgut was determined to be pH 5.0. Pectinase enzyme is more stable at pH 4.0–7.0 than highly acidic and alkaline pH. However, the enzyme was more stable at slightly acidic pH (pH 6.0) when incubation time increased. Maximum activity for the enzyme incubated at different temperatures was observed to be 40°C. Optimum pH activity for α-amylase and pectinase is not completely consistent with the pH prevailing in the larval midgut. This is the first report of the presence of pectinase activity in H. postica.  相似文献   

4.
It was previously reported that α-amylase accumulation is caused within the mycelium grown in a phosphate deficient medium and the concentration of anions or pH in a surrounding medium is responsible for its liberation. As it was subsequently found that α-amylase liberation from the mycelium of Aspergillus oryzae is stimulated by peptone, an attempt was made on purification of effective substances from it. The present paper describes on purification and properties of phosphopeptides found as an effective substance for α-amylase liberation, and discusses on the stimulation effect, comparing with the effects on pH and concentration of anions which were previously observed.  相似文献   

5.
Aspergillus kawachii α-amylase [EC 3.2.1.1] I and II were purified from shochu koji extract by DEAE Bio-Gel A ion exchange chromatography, Sephacryl S-300 gel chromatography (pH 3.6), coamino dodecyl agarose column chromatography and Sephacryl S-200 gel chromatography. By gel chromatography on a Sephacryl S-300 column, the molecular weights of the purified α-amylase I and II were estimated to be 104,000 and 66,000, respectively. The isoelectric points of α-amylase I and II were 4.25 and 4.20, respectively. The optimal pH range of α-amylase I was 4.0 to 5.0, and the optimum pH of α-amylase II was 5.0. The optimum temperatures of both α-amylases were around 70°C at pH 5.0. Both α-amylases were stable from pH 2.5 to 6.0 and up to 55°C, retaining more than 90% of the original activities. Heavy metal ions such as Hg2 + and Pb2 + were potent inhibitors for both α-amylases.  相似文献   

6.
Abstract

Enzymes are indispensable biocatalysts required in various steps of textile processing to minimize various chemical-induced hazards. The present work focuses on the applications of the truncated α-amylase in textile industry for desizing of fabrics by starch hydrolysis. The multiple sequence alignment was performed to find homology and the possible truncation region in Bacillus subtilis MTCC 121 α-amylase with same bacilli family α-amylase. Two constructs were generated for α-amylase gene of Bacillus subtilis MTCC 121 (Amy_F, full-length and Amy_T, C-terminal truncated) were cloned, overexpressed, purified, and characterized. Results revealed that activity of Amy_T was found to be 2.87-fold better than Amy_F. Further, the optimum temperature of Amy_F and Amy_T was obtained at 45?°C and 55?°C, respectively, whereas optimum pH was recorded at pH 7 and pH 8, respectively. Improved thermostability of Amy_T was further confirmed through thermal shift assay. Subsequently, starch-coated fabrics were tested for starch removal using the α-amylases. Comparative analysis revealed that Amy_T performed better in starch removal from polystyrene (85%), silk (75%), and cotton (70%) fabrics. The removal of starch from the fabrics was further confirmed by FESEM. Conclusively, this work presents one truncated α-amylase as an improved candidate over its full-length counterpart for textile desizing.  相似文献   

7.
A monoclonal antibody against recombinant thermostable α-amylase produced by Escherichia coli was isolated from serum-free medium and immobilized on Sepharose 4B. The adsorption equilibrium between α-amylase and the immobilized immuno-adsorbent showed a Langmuir type isotherm. The breakthrough curve calculated numerically using the averaged volumetric coefficient coincided well with the experimental data. More than 90% of the activity of bound α-amylase could be recovered by eluting with glycine-HCl buffer (pH 2.5). The elution profile at pH 2.5 became sharper with increasing temperature. By using an immuno-affinity column, the recombinant α-amylase produced by E. coli could be purified homogeneously from crude extract enzyme solution with two-step elution.  相似文献   

8.
α-Amylase, which plays an essential role in starch degradation, is expressed mainly in the pancreas and salivary glands. Human α-amylase is also detected in other tissues, but it is unclear whether the α-amylase is endogenously expressed in each tissue or mixed exogenously with one expressed by the pancreas or salivary glands. Furthermore, the biological significance of these α-amylases detected in tissues other than the pancreas and salivary glands has not been elucidated. We discovered that human α-amylase is expressed in intestinal epithelial cells and analyzed the effects of suppressing α-amylase expression. α-Amylase was found to be expressed at the second-highest messenger RNA level in the duodenum in human normal tissues after the pancreas. α-Amylase was detected in the cell extract of Caco-2 intestinal epithelial cells but not secreted into the culture medium. The amount of α-amylase expressed increased depending on the length of the culture of Caco-2 cells, suggesting that α-amylase is expressed in small intestine epithelial cells rather than the colon because the cells differentiate spontaneously upon reaching confluence in culture to exhibit the characteristics of small intestinal epithelial cells rather than colon cells. The α-amylase expressed in Caco-2 cells had enzymatic activity and was identified as AMY2B, one of the two isoforms of pancreatic α-amylase. The suppression of α-amylase expression by small interfering RNA inhibited cell differentiation and proliferation. These results demonstrate for the first time that α-amylase is expressed in human intestinal epithelial cells and affects cell proliferation and differentiation. This α-amylase may induce the proliferation and differentiation of small intestine epithelial cells, supporting a rapid turnover of cells to maintain a healthy intestinal lumen.  相似文献   

9.
Geobacillus sp. 4j, a deep-sea high-salt thermophile, was found to produce thermostable α-amylase. In this work, culture medium and conditions were first optimized to enhance the production of thermostable α-amylase by statistical methodologies. The resulting extracellular production was increased by five times and reached 6.40?U/ml. Then, a high-temperature batch culture of the thermophile in a 15?l in-house-designed bioreactor was studied. The results showed that a relatively high dissolved oxygen (600?rpm and 15?l/min) and culture temperature of 60°C facilitated both cell growth and α-amylase production. Thus, an efficient fermentation process was established with initial medium of pH 6.0, culture temperature of 60°C, and dissolved oxygen above 20%. It gave an α-amylase production of 79?U/ml and productivity of 19804?U/l·hr, which were 10.8 and 208 times higher than those in shake flask, respectively. This work is useful for deep-sea high-salt thermophile culture, where efforts are lacking presently.  相似文献   

10.
Aspergillus oryzae RIB40 has three α-amylase genes (amyA, amyB, and amyC), and secretes α-amylase abundantly. However, large amounts of endogenous secretory proteins such as α-amylase can compete with heterologous protein in the secretory pathway and decrease its production yields. In this study, we examined the effects of suppression of α-amylase on heterologous protein production in A. oryzae, using the bovine chymosin (CHY) as a reporter heterologous protein. The three α-amylase genes in A. oryzae have nearly identical DNA sequences from those promoters to the coding regions. Hence we performed silencing of α-amylase genes by RNA interference (RNAi) in the A. oryzae CHY producing strain. The silenced strains exhibited a reduction in α-amylase activity and an increase in CHY production in the culture medium. This result suggests that suppression of α-amylase is effective in heterologous protein production in A. oryzae.  相似文献   

11.
At the investigation of some properties of the α-amylase and proteinase in the culture filtrat from Bacillus licheniformis MB 80 strain it has been established that the α-amylase activity is the highest at pH 6.0 to 6.5 and at 90°C, that the proteolytic activity is the highest at pH 9.5 to 10.0 and at 70°C and that the proteinase is inactivated at temperatures over 70°C.  相似文献   

12.
In a previous paper it has been described that α-amylase formation in Aspergillus oryzae is stimulated by soluble starch, glycogen and maltose, whereas it is inhibited by glucose, which is added into a growing medium or a secondary incubation medium as the carbon source. The present paper reports that isomaltose and panose are the most effective inducers among a large number of sugars examined here, and suggests the importance of transglucosidase action demonstrated in view of α-amylase formation. The initial action of inducers in this system is also discussed.  相似文献   

13.
Abstract

The α-Amylase and α-glucosidase are two main enzymes involved in carbohydrate metabolism. This study was aimed at detecting alpha-amylase inhibitory activity from edible mushroom mycelia. Oyster mushroom was collected from a natural source, from Indian Institute of Technology (Banaras Hindu University) campus and was maintained in vitro in mycelial form. Chloroform, acetone, methanol, and water were used separately for extraction of an active constituent from mycelial cells grown, for 7?days, in potato dextrose broth. The extracts were tested for alpha-amylase inhibitory activity. Chloroform, acetone, and methanol extracts were found to have alpha-amylase inhibitory activity, with IC50 values of 1.71, 224, and 383?μg/mL, respectively. Aqueous extract had no enzyme inhibitory activity. The acetone extract inhibited α-amylase non-competitively whereas chloroform extract showed competitive inhibition. Acetone extraction yielded highest total phenolic content (TPC) of 0.524?mM of gallic acid equivalent, whereas chloroform extraction resulted in lowest TPC of 0.006?mM. The HPLC and absorbance maxima of acetone and chloroform extracts suggest that the bioactive component responsible for enzyme inhibition could be glycoproteins in chloroform extract and catechins (flavonoids) in acetone extract. Thus, the mushroom mycelia under study may be exploited for production and purification of a lead compound for the development of the α-amylase inhibitory drug.  相似文献   

14.
An α-glucosidase has been isolated from the mycelia of Penicillium purpurogenum in electrophoretically homogeneous form, and its properties have been investigated. The enzyme had a molecular weight of 120,000 and an isoelectric point of pH 3.2. The enzyme had a pH optimum at 3.0 to 5.0 with maltose as substrate. The enzyme hydrolyzed not only maltose but also amylose, amylopectin, glycogen, and soluble starch, and glucose was the sole product from these substrates. The Km value for maltose was 6.94×10?4 m. The enzyme hydrolyzed phenyl α-maltoside to glucose and phenyl α-glucoside. The enzyme had α-glucosyltransferase activity, the main transfer product from maltose being maltotriose. The enzyme also catalyzed the transfer of α-glucosyl residue from maltose to riboflavin.  相似文献   

15.
The effect of cytokinin, kinetin, on abscisic acid (dormin) inhibition of α-amylase synthesis and growth in intact barley seed was investigated. Abscisic acid at 5 × 10?5M nearly completely inhibited growth response and α-amylase synthesis in barley seed. Kinetin reversed to a large extent abscisic acid inhibition of α-aniylase synthesis and coleoptile growth. The response curves of α-amylase synthesis and coleoptile growth in presence of a fixed amount of abscisic acid (6 × l0?6M) and increasing concentrations of kinetin (from 5 × l0?7M to 5 × 10?5 M) showed remarkable similarity. Kinetin and abscisic acid caused synergistic inhibition of root growth. Gibberellic acid was far less effective than kinetin in reversing abscisic acid inhibition of α-amylase synthesis and coleoptile growth. A combination of kinetin and gibberellic acid caused nearly complete reversal of abscisic acid inhibition of α-amylase synthesis but not the abscisic acid inhibition of growth. The results suggest that factors controlling α-amylase synthesis may not have a dominant role in all growth responses of the seed. Kinetin possibly acts by removing the abscisic acid inhibition of enzyme specific sites thereby allowing gibberellic acid to function to produce α-amylase.  相似文献   

16.
Halophiles have been perceived as potential source of novel enzymes in recent years. The interest emanates from their ability to catalyze efficiently under high salt and organic solvents. Marinobacter sp. EMB8 α-amylase was found to be active and stable in salt and organic solvents. A study was carried out using circular dichroism (CD), fluorescence spectroscopy, and bioinformatics analysis of similar protein sequence to ascertain molecular basis of salt and solvent adaptability of α-amylase. Structural changes recorded in the presence of varying amounts of NaCl exhibited an increase in negative ellipticity as a function of salt, confirming that salt stabilizes the protein and increases the secondary structure, making it catalytically functional. The data of intrinsic and extrinsic fluorescence (using 1-anilinonaphthalene 8-sulfonate [ANS] as probe) further confirmed the role of salt. The α-amylase was active in the presence of nonpolar solvents, namely, hexane and decane, but inactivated by ethanol. The decrease in the activity was correlated with the loss of tertiary structure in the presence of ethanol. Guanidine hydrochloride and pH denaturation indicated the molten globule state at pH 4.0. Partial N-terminal amino acid sequence of the purified α-amylase revealed the relatedness to Pseudoalteromonas sp. α-amylase. “FVHLFEW” was found as the N-terminal signature sequence. Bioinformatics analysis was done using M. algicola α-amylase protein having the same N-terminal signature sequence. The three-dimensional structure of Marinobacter α-amylase was deduced using the I-TASSER server, which reflected the enrichment of acidic amino acids on the surface, imparting the stability in the presence of salt. Our study clearly indicate that salt is necessary for maintaining the secondary and tertiary structure of halophilic protein, which is a necessary prerequisite for catalysis.  相似文献   

17.
B. subtilis α-amylase was immobilized on cyanogen bromide activated carboxymethyl cellulose. The conversion of wheat starchwas carried out at 72°C in a stirred tank by soluble and immobilized α-amylase. The initial reaction rate with immobilized α-amylase was lower than with the soluble enzyme, but after 1 hr immobilized α-amylase produced a higher quantity of reducing sugars than the soluble enzyme. The action pattern of immobilized α-amylase was different from that of the soluble enzyme: immobilized α-amylase produced relatively more glucose and maltose, except at the beginning of conversion. Immobilized α- readily hydrolyze G6. The starch conversion by immobilized α-amylase was not diffusion controlled at a stirring rate of 100-300 rpm.  相似文献   

18.
α淀粉酶广泛应用于粮食加工、食品、酿造、发酵、纺织品和医药工业[1].由于固定化酶的优点,国内外研究人员对固定化糖化酶[2,3]和固定化α淀粉酶[4]的制备及在淀粉酶法生产葡萄糖方面的应用作了大量的研究,显示了工业应用前景.然而,迄今为止,用磁性载体固定化α淀粉酶尚未见报道.我们用磁性聚乙二醇胶体粒子作载体,制备出具有磁响应性强、稳定性强、活力高的固定化α淀粉酶.由于具有磁响应性,可借助外部磁场方便简单地回收酶,为该酶工业化生产葡萄糖提供了一种新的途径.而且,由于磁性的优点,也为该酶在食品、医药、纺织…  相似文献   

19.
The growth of a thermophilic Clostridium sp. and the production of α-glucosidase, α-amylase and pullulanase were studied under anaerobic conditions using different carbon and nitrogen sources and varying pH values and temperatures. Growth and enzyme activities were highest with soybean meal as the nitrogen source. The optimum concentration was 2.5% [w/v] for the production of α-amylase as well as pullulanase and 2% [w/v] for α-glucosidase. The best carbon source proved to be soluble starch for α-amylase, and pullulanase and maltose for α-glucosidase. Growth and enzyme production reached their optimum at pH 6.5 to 7.0 and 70°C. Under these conditions, the enzyme activities followed exponential growth with maximum yields of α-glucosidase, α-amylase and pullulanase at 28, 36, and 44 h.  相似文献   

20.
Activity of α-amylase was revealed in the midgut and salivary glands of the wheat and barley pentatomid pest, A. acuminata. The activity was determined in salivary gland more than those in midgut. Optimal activity of the enzyme occurred at 40°C. Optimal pH activity in salivary gland (pH = 6) was more than those in the midgut (pH = 4.5). pH stability analysis of the enzyme showed that the enzyme is more stable at slightly acidic pHs than those at acidic and alkaline pHs. However, α-amylase is more stable at acidic pH in long period of time. Temperature stability analysis determined the enzyme was remarkably active over a broad range of temperature (5–40°C). α-Amylase activity was decreased after addition of MgCl2, Tris, Triton X-100, CuSO4, SDS, urea and CaCl2. The salts NaCl and KCl increased the enzyme activity from midgut and salivary glands. Zymogram analysis of midgut and salivary gland extract showed at least two bands of amylase activity in the midgut and salivary glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号