首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Escherichia freundii alkaline phosphatase was found in a membrane fraction and was purified by procedures involving spheroplast formation with lysozyme and EDTA, and DEAE-cellulose and Sephadex G-150 column chromatographies. Then this enzyme along with other phosphatases was investigated on the ability to transfer the phosphoryl group from p-nitrophenyl phosphate to pyridoxine. It was found that the ability of the transphosphorylation varied with these phosphatases. The transphosphorylation to hydroxy compounds such as alcohols, sugars and nucleosides was also compared. Escherichia freundii acid phosphatase showed the highest activity of transphosphorylation among phosphatases tested. The mechanism of transphosphorylation was discussed.

An enzyme, pyridoxamine 5′-phosphate transaminase, was purified from the cell-free extract of Clostridium kainantoi. The purification procedures involved ammonium sulfate fractionation, protamine sulfate treatment and, DEAE-cellulose, hydroxylapatite, DEAE-Sephadex and Sephadex G-200 column chromatographies. The purified enzyme, which had approximately 2700-fold higher specific activity over the original extract, showed a single schlieren pattern in the ultracentrifuge. From the spectral analysis, it seemed that pyridoxamine 5′-phosphate transaminase did not contain pyridoxal 5′-phosphate as a prosthetic group. It was recognized that the transamination was accelerated by the addition of amino acid and was inhibited by diisopropyl phosphofluoride. Glutamic acid formed in the reaction was identified to be a D-isomer. A study on the substrate specificity showed that the enzyme might be possible to be specific for pyridoxamine 5′-phosphate.

The extracellular formation of vitamin B6 was searched in marine and terrestrial microorganisms. Two bacterial strains were selected and were identified as Vibrio and Flavobacterium, respectively. Marine microorganisms showed the considerable formation of vitamin B6 and the presence of vitamin B6 in sea water was also recognized. The cultural and reaction conditions for vitamin B6 formation by these strains were investigated. Glycerol was commonly the most effective compound on vitamin B6 formation among the compounds tested. It was suggested that both bacteria did not have the control system on vitamin B6 biosynthesis by the amount of possible end products.  相似文献   

2.
Oxidation of pyridoxine-P and pyridoxamine-P to pyridoxal-P, inhibition and reactivation of the oxidases were investigated, using the Alcaligenes faecalis oxidase and the Azotobacter agilis oxidase catalyzing. Zone electrophoretic experiments indicated that the oxidases obtained from Alcaligenes faecalis and Azotobacter agilis moved to cathode and anode, respectively, under the same conditions. The oxidation-reduction potential of the both oxidase was found to be about ?50 mV. The oxidation of both pyridoxine-P and pyridoxamine-P was strongly inhibited by pyridoxal-P, pyridoxal, pyridine-4-aldehyde and 4-pyridoxic acid phosphate. This inhibition was markedly decreased by Tris-HCl buffer, and other amino compounds that form Schiff’s base of pyridoxal-P.

An enzyme “pyridoxamine-P transaminase” which catalyzed the transamination between pyridoxamine-P and α-ketoglutaric acid was found in certain anaerobic bacteria, such as Clostridium acetobutylicum, Cl. kainantoi, Cl. kaneboi and Cl. butyricum. The pyridoxamine-P transaminase in the cell-free extract of Cl. kainantoi was purified and some properties were investigated. α-Ketoglutaric acid appeared to be the dominant amino acceptor. Pyridoxamine-P was found to be active as amino donor, but other amino compounds were inert. Since the results were inconclusive, the possibility of vitamin B6-enzyme of pyridoxamine-P transaminase was not shown by the inhibitor studies. Physiological role of the pyridoxamine-P transaminase was discussed in the relation to vitamin B6 metabolism in anaerobic bacteria.  相似文献   

3.
A large number of bacteria were searched for the activity of the synthesis of pyridoxine 5′-phosphate by the transphosphorylation between pyridoxine and p-nitrophenyl phosphate. Several properties of the transphosphorylation by the partially purified enzyme prepared from one of the isolated bacteria, Escherichia freundii K–1, were investigated accompanying with phosphatase activity. The behavior of the phosphotransferase and phosphatase activities in various reaction conditions were almost parallel. It was pointed out that the transphosphorylation might be catalyzed by the function of acid phosphatase. The phosphoryl donor specificity for the enzyme system was found to be broad.

The enzyme which catalyzed the transphosphorylation of pyridoxine accompanying with the hydrolyzation of phosphoryl donor substrates was purified and crystallized from the cell free extract of Escherichia freundii K–1. The purification procedures involved heat treatment, ammonium sulfate fractionation and DEAE-cellulose, hydroxylapatite, and CM-sephadex column chromatographies. The crystalline enzyme showed the sedimentation coefficient of 7.5 S and the diffusion coefficient of 6.15 × 10?7 cm2/sec. The molecular weight was calculated to be 120,000. Several properties of the purified enzyme were also investigated. It was recognized that the transphosphorylation of pyridoxine might be catalyzed by the action of acid phosphatase.  相似文献   

4.
Pyridoxine-P and pyridoxamine-P oxidase in the extract of Alcaligenes faecalis was purified and some properties of the enzyme were investigated. Several lines of evidence indicated that both pyridoxine-P oxidation and pyridoxamine-P oxidative deamination were catalyzed with a single enzyme. The enzyme is a flavoprotein, and the treatment of the enzyme with acid ammonium sulfate resolved the enzyme into apo- and coenzyme. Flavin mononucleotide reactivated the apoenzyme for the oxidation of both substrates. Physiological role of the pyridoxine-P and pyridoxamine-P oxidase was suggested in relation to the transformation of vitamin B6 in microorganisms.  相似文献   

5.
Some properties of pyridoxine glucoside-synthesizing enzyme were studied using the partially and highly purified enzyme preparations from Micrococcus sp. No. 431.

The enzyme was stable at pH 7.0 and between 0°C and 30°C. The maximal activity was obtained at pH 8.0 and 37°C. Besides sucrose, phenyl-α-d-glucoside and maltose served as glucosyl donor. Of vitamin B6 compounds tested, only pyridoxine served as glucosyl acceptor. The enzyme activity was inhibited by PCMB and heavy metal ions, and the inhibition was prevented by 2-mercaptoethanol, indicating the enzyme would be a sulfhydryl enzyme. The activity was not affected by chelating agents and not activated by metal ions.  相似文献   

6.
The enzyme activity to synthesize pyridoxine glucoside was demonstrated in intact cells and cell extracts of genera, Sarcina and Micrococcus. The isolated and identified strain, Micrococcus sp. No. 431 was found to have high activity of this enzyme in its cell extract.

The enzyme activity reached to a maximum after 20 hr of cultivation.

The enzyme which synthesized pyridoxine glucoside via transglucosidation from sucrose to pyridoxine was purified from Micrococcus sp. No. 431 by means of ammonium sulfate fractionation, DEAE-Sephadex, hydroxylapatite and Sephadex G–100 column chromatographies. The enzyme was purified about 354–fold and confirmed to be homogenous in polyacrylamide-gel electrophoresis and ultracentrifugation.  相似文献   

7.
The production of vitamin B6 (B6) compounds with a cell-suspension of Achromobacter cycloclastes A.M.S. 6201 under various conditions were examined. An obvious accumulation of B6 compounds in the incubation medium with a cell-suspension of the organism harvested at the middle to later part of exponential phase of growth was observed. γ-Aminobutyric acid or β-alanine was found to stimulate the B6 production markedly, when they were added to the incubation mixture together with glycerol. Some discussion on the implication of these compounds as precursors of B6 was presented.  相似文献   

8.
An enzyme, comenic aldehyde dehydrogenase, which catalyzes the oxidation of comenic aldehyde to comenic acid was partially purified from cell extract of Arthrobacter ureafaciens K-1.

The enzyme was purified 31-fold at Sephadex G-100 filtration step, 112-fold at DEAE-Sephadex A-50 fractionation step, and recovery of the activity was 73.3% and 38.5% respectively.

NADP and magnesium ion were essential for the oxidation. The enzyme shows optimum activity at pH 7.8. Enzyme activity was extremely sensitive to sulfhydryl reagents such as p-chloromercuribenzoate and monoiodoacetate. l-Cysteine or dithiothreitol protected the enzyme from p-chloromercuribenzoate inhibition. Carbonyl reagents, such as hydroxylamine and semicarbazide, inhibit the enzyme reaction by formation of addition compounds between carbonyl reagents and aldehyde group of the substrate. The enzyme was completely inactivated after heating for 5 min at 40°C The Km for 5-methoxy comenic aldehyde is 2.5×10?6 m, and for NADP is 0.4×1O?6 m. The reaction product, 5-methoxy comenic acid was identified by paperchromatography. The characterization of the enzyme has been carried out by using 5-methoxy comenic aldehyde as the substrate in stead of comenic aldehyde.  相似文献   

9.
An enzymatic oxidation of kojic acid to comenic aldehyde was found in the decomposition process of kojic acid by Arthrobacter ureafaciens strain (K-l), a kojic acid decomposing bacteria.

This enzyme was (probable a new type of non-heme iron protein) is assumed to catalyze the dehydrogenation of kojic acid, while the ferric ion contained in the enzyme is considered to serve as an acceptor of hydrogen released from kojic acid. The resulted ferrous ions are oxidized either by molecular oxygen under aerobic conditions or by NAD under anaerobic conditions, accompanying hydrogen peroxide in the former and reduced NAD in the latter. The enzyme was partially purified by using ammonium sulfate precipitation, gel filtration on Sephadex G-200 column and column chromatography with DEAE-Sephadex A-50. The activity increased to 85 fold, compared with crude extracts and the recovery of the activity was 33.9%. The optimum pH of the reaction was 7.75. The enzyme was inactivated by PCMB, and unstable upon heat treatment. A loss of about 50% of the activity was caused by heating at 35%C for 5 min, but some reducing agents protected the enzyme from PCMB inhibition and the heat inactivation. Not only kojic acid, but also benzyl kojic acid or 5-methoxy kojic acid may be substrates. Km value for kojic acid was 1.43 × 10?5m. The molecular weight of the enzyme was estimated to be about 55,000 and the enzyme contained about two atoms of iron in one molecule. The reaction mechanism for kojic acid oxidase is discussed.  相似文献   

10.
The dethiomethylation of methionine by a dialyzed extract obtained from the protozoa-rich fraction of rumen fluid is stimulated 2.5-fold by pyridoxal phosphate and strongly inhibited by deoxypyridoxine, a pyridoxal phosphate antagonist. These effects are not seen with undialyzed extracts or with whole rumen fluid. It is suggested that the anaerobic dethiomethylation of methionine by rumen microorganisms requires pyridoxal phosphate as a cofactor.  相似文献   

11.
The ability of the formation of coenzyme A from pantothenic acid and cysteine in the presence of AMP or ATP was searched in yeasts and bacteria. The result of screening showed that the activity was found in several yeasts and the bacteria belonging to the genera Sarcina, Corynebacterium and Brevibacterium. Particularly, Brevibacterium ammoniagenes IFO 12071 (ATCC 6871) accumulated a large amount of coenzyme A.

Isolation of the reaction products, which were synthesized by Brevibacterium ammoniagenes IFO 12071, were carried out. The isolates were identified as coenzyme A, dephosphocoenzyme A and phosphopantothenic acid.

The possibility for the formation of coenzyme A in a larger amount from pantothenic acid and cysteine was investigated with baker’s yeast under the condition coupled with ATP-generating system.

Effect of various factors affecting the accumulation of coenzyme A was investigated. Among them, glucose concentration and inorganic phosphorus concentration were the most important factors for its accumulation. Coenzyme A was not accumulated without the phosphorylation of AMP to ATP. Several cationic surfactants stimulated the accumulation of coenzyme A.

The amount of coenzyme A accumulated reached about 200 μg per ml of the reaction mixture under the suitable reaction conditions employed.  相似文献   

12.
It is confirmed by a new method for the determination of d-glutamic acid, that Aerobacter strain A rapidly metabolizes d-glutamic acid, while it only shows feeble metabolic activity towards l-glutamic acid when it is grown on a dl-glutamate-K2HPO4 medium. A specific d-glutamic oxidase is demonstrated in the cell-free extracts of Aerobacter strain A. This enzyme seems to be different from d-glutamic-aspartic oxidase obtained from Aspergillus ustus by the authors, since the former has no activity towards d-aspartic acid.  相似文献   

13.
In the previous paper it was reported that a mold enzyme preparation from Aspergillus ustus strain f., which was found to oxidize d-glutamic acid specifically, was always accompanied by the oxidation of d-aspartic acid. The present study has been carried out to investigate whether or not d-glutamic and d-aspartic acids are oxidized by the same enzyme.

A highly purified enzyme preparation which still shows both activities has been obtained. Several evidences which support the assumption that the both reactions might be catalyzed by a single enzyme, which may be called d-monoamino-dicarboxylic acid oxidase, are also presented.  相似文献   

14.
Several strains of bacteria belonging to genus Aerobacter were found to oxidize D-glutamate rapidly, while tbey show feeble oxidative activity toward the L-form even when they were grown in the medium containing DL-glutamate.

The isolation of L-glutamate, a natural amino acid, from its DL-form was achieved by the degradation of D-glutamic acid using one of these strains.

This may be the first observation on a natural amino acid obtained from the racemic one by the metabolic action of the organism.

A new enzyme, D-glutamic acid oxidase, which is responsible for D-glutamate degradation in this organism and differs from Krebs’ D-amino acid oxidase, has been postulated.  相似文献   

15.
The intermediary metabolism of gallic acid by Aspergillus niger under the influence of some added inhibitors has been studied. The decomposition of gallic acid by lyophilized cells under fluoroacetate inhibition allowed cis-aconitic acid, α-ketoglutaric acid and citric acid to accumulate. A mechanism of gallic acid decomposition via cis-aconitic acid has been inferred.  相似文献   

16.
17.
Patients with subacute combined degeneration who smoked had significantly lowered plasma thiocyanate levels than control smokers, but plasma thiocyanate levels in non-smoking patients with neurological disease due to vitamin B12 deficiency were not significantly different from control values. The results provide no support for the hypothesis that chronic cyanide intoxication is responsible for the occurrence of neurological disease in a minority of patients with vitamin B12 deficiency, although they do not conclusively exclude this possibility. The association between smoking and subacute combined degeneration of the cord has been confirmed in this study but it remains unexplained.  相似文献   

18.
In pregnancy the level of serum vitamin B12 is lower in women who smoke than in non-smokers. This finding occurs independently of social class, parity, or level of haemoglobin. In addition, the mean serum B12 level tends to be less in women who are anaemic and is less in those women who have smaller babies. These findings may be an effect of the cyanide content of tobacco smoke, since cyanide may be detoxified by a mechanism which depletes the stores of vitamin B12 in the body.  相似文献   

19.
The review highlights metabolism and biological functions of vitamin B 1 (thiamine). It considers thiamine transport systems in various organisms enzymes of its biosynthesis and degradation, as well as molecular basis of thiamine-dependent hereditary pathologies. A special attention is paid to discussion of the role of thiamine triphosphate and adenylated thiamine triphosphate, a new thiamine derivative recently discovered in living cells.  相似文献   

20.
The production of pimelic acid from azelaic acid by microorganisms was studied. About 100 strains of bacteria which were able to utilize azelaic acid as a sole carbon source were isolated from soil and other natural materials. Among these bacteria, several strains produced a large quantity of an organic acid (pimelic acid) from azelaic acid in their culture fluids during the cultivation. The acid was isolated from the culture fluid of strain A133 in crystalline form. The crystal was identified as pimelic acid by physicochemical and biological methods.

From the results of investigations on the morphological and physiological characters, the bacterial strain A133 was assumed to be Micrococcus sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号