首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conversion of (?)-carvone and (+)-carvone by a strain of Aspergillus niger was studied as one of the series of biochemical reduction of terpenes.

(?)-Carvone was found to be reduced essentially to (+)-neodihydrocarveol, although (+)-dihydrocarvone and (+)-isodihydrocarvone were also formed in small amounts, whereas (+)-carvone was converted to (?)-isodihydrocarvone, (?)-isodihydrocarveol, (?)-neoisodihydrocarveol, (?)-dihydrocarvone, (?)-neodihydrocarveol, and (+)-dihydrocarveol, of which the former three were the major products.

The metabolic pathways for (?)-carvone and (+)-carvone by the strain of Aspergillus niger are discussed and the results on microbial and chemical reductions of carvone and dihydrocarvone are summarized.  相似文献   

2.
Many actinomycetes, newly isolated from soil, converted (?)-carvone to either (?)-trans-carveol or (?)-cis-carveol or to a mixture of both compounds, and known metabolic products, such as (+)-dihydrocarvone, (+)-isodihydrocarvone, (+)-neodihydrocarveol, (?)-dihydrocarveol, (+)-isodihydrocarveol and (+)-neoisodihydrocarveol.

Identification of the metabolic products and the metabolic pathways of (?)-carvone were described in a strain of Streptomyces, A-5–1 and a strain of Nocardia, 1-3-11. A summary shows the reaction mechanism pattern of (?)-carvone conversion by actinomycetes.  相似文献   

3.
Within the framework of a large-scale screening carried out on 146 yeasts of environmental origin, 16 strains (11% of the total) exhibited the ability to biotransform (4S)-(+)-carvone. Such positive yeasts, belonging to 14 species of 6 genera (Candida, Cryptococcus, Hanseniaspora, Kluyveromyces, Pichia and Saccharomyces), were thus used under different physiological state (growing, resting and lyophilised cells). Yields (expressed as% of biotransformation) varied from 0.14 to 30.04%, in dependence of both the strain and the physiological state of the cells. Products obtained from reduction of (4S)-(+)-carvone were 1S,4S- and 1R,4S-dihydrocarvone, (1S,2S,4S)-, (1S,2R,4S)- and (1R,2S,4S)-dihydrocarveol. Only traces of (1R,2R,4S)-dihydrocarveol were observed in a few strains. As far as the stereoselectivity of the biocatalysis, with the sole exception of a few strains, the use of yeasts determined the prevalent accumulation of 1S,4S-isomers [(1S,4S)-dihydrocarvone + (1S,2S,4S)-dihydrocarveol + (1S,2R,4S)-dihydrocarveol].The addition of glucose (acting as auxiliary substrate for cofactor-recycling system) to lyophilised yeast cells determined a considerable increase of biocatalytic activity: in particular, two strains showed a surprising increase of the% of biotransformation of (4S)-(+)-carvone (to values >98%).  相似文献   

4.
Reduction of (?)-menthone ((?)- 1 ), (+)-(R)-methyl-α-campholenone ((+)- 2 ), (+)-carvone ((+)- 3 ), and eucarvone ( 4 ) was carried out by means of cells of the Rhodotorula mucilaginosa species immobilized in polyacrylamide gel. Alcohols with the (S)-configuration, (+)-neomenthol ((+)- 1a ), (+)-(R)-methyl-α-campholenol ((+)- 2a ), (?)-neoisodihydrocarveol ((?)- 3a ), dihydroeucarveol ((?)- 4a ), and small amounts of (?)-dihydroeucarvone ((?)- 5 ), were obtained. The cells of R. mucilaginosa maintained after this reaction ability to reduce standard acetophenone to (?)- 1 -phenyl- 1 -ethanol.  相似文献   

5.
As a part of series on the biochemical reduction of terpenes, the conversion of (?)-carvotanacetone (I) and (+)-carvotanacetone (II) by Pseudomonas ovalis, strain 6–1, has been studied.

By the action of the microorganism, I was reduced to give (+)-carvomenthone (III), (+)-neocarvomenthol (IV), and (?)-carvomenthol (V), whereas II was also reduced to (?)-isocarvomenthone (VI), (?)-carvomenthone (VII), (?)-isocarvomenthol (VIII), and (?)-neoisocarvomenthol (IX); of which III, VI and IX are the major products.

The metabolic pathways of I and II and mechanism of stereospecific hydrogenation are also discussed.  相似文献   

6.
Abstract

The development of more efficient and environmentally friendly analytical methods represents a current focus for the fine chemical industry. In particular, microscale methodologies that are free of solvents/reagents. The headspace-GC/MS (HS-GC) methodology was employed in this study as a tool for monitoring a biocatalysed reaction of (4S)-(+)-carvone using Phoma sp., a filamentous fungus from human skin. Biocatalysis provides some advantages, such as high efficiency, high degrees of regioselectivity, chemoselectivity, and enantioselectivity. In order to optimize the small scale biocatalytic reaction of the (4S)-(+)-carvone by the filamentous fungus Phoma sp. was used headspace GC/MS methodology, factorial design of experiments and the response surface methodology (RSM) was performed using the biomass of the fungus, substrate mass and pH as parameters. It was observed that for all reactions conditions tested, forming the products (1?R,4S)-dihydrocarvone and (1S,4S)-dihydrocarvone. The most influential factor was pH, with the highest conversion rate (>95%) and diastereomeric excess (d.e.) (>80%) obtained at pH 5.0. Thus, it was demonstrated that human skin Phoma sp. fungus showed significant bioreduction activity and that headspace GC/MS is an efficient approach for real-time monitoring the biocatalysed reactions.  相似文献   

7.
The biotransformation of several monoterpenes by the locally isolated unicellular microalga, Oocystis pusilla was investigated. The metabolites were identified by thin layer chromatography and GC/MS. The results showed that O. pusilla had the ability to reduce the C=C double bond in (+)-carvone to yield trans-dihydrocarvone and traces of cis-dihydrocarvone. O. pusilla also converted (+)-limonene to trans-carveol, as the main product, and yielded carvone and trans-limonene oxide. Furthermore, (−)-linalool was converted to trans-furanoid and trans-pyranoid linalool oxide, thymol was converted to thymoquinone, (−)-carveol was converted to carvone and trans-dihydrocarvone, (−)-menthone and (+)-pulegone were converted to menthol, (L)-citronellal was converted to citronellol, and (+)-β-pinene was converted to trans-pinocarveol.  相似文献   

8.
(+)-Isopiperitenone (100 mg l–1) was converted into (4S,6R)-6-hydroxy- and (4S,8R)-8,9-epoxyisopiperitenone, aside from the already known (+)-7-hydroxyisopiperitenone, by suspension cell culture of Mentha piperita. As (–)-isopiperitenone was hydroxylated similarly, this implies that the hydroxylating enzyme(s) have a broad substrate stereospecificity in regards to the stereochemistry at C4. (–)-(4R)-Carvone was reduced by the Mentha cells both at carbonyl and C1-C6 double bond to give (1R,2S,4R)-neodihydrocarveol and (1R,2R,4R)-dihydrocarveol with the former being the major product. (+)-(4S)-Carvone had a similar reduction pattern, producing (1S,2R,4S)-neodihydrocarveol and (1S,4S)-dihydrocarvone. Formation of these compounds indicates that the peppermint cell culture cannot only hydroxylate the allylic position but also reduce the ,-unsaturated carbonyl system.  相似文献   

9.
On the reduction of (?)-carvone with sodium in aqueous-ammonia, the predominant product was found to be (?)-dihydrocarveol, a new stereoisomer. From this fact, it might be concluded that this reduction method is stereospecific for (?)-carvone, similary as in the case of (?)-menthone. By the catalytic hydrogenation of (?)-dihydrocarveol, a new stereoisomer of carvomenthol has also been prepared. It is noteworthy that (?)-dihydrocarveol has the same conformation (e, e, e) as that of (?)-menthol, which was also quantitatively obtained from (?)-menthone by application of our method of reduction reported previously.  相似文献   

10.
A novel synthesis of the enone 12 starting from (+)-dihydrocarvone (3) and its transformation into (+)-7-hydroxycostal (1) are described. The ketone 10, obtained from 4 through a four-step sequence was converted to 12 by acid-catalyzed elimination and subsequent regioselective hydrogenation. Alternatively, the methoxyhydroperoxide 13 generated by the ozonolysis of 4 was subjected to the Criegee rearrangement, providing a mixture of 10 and 14, which on acid treatment, gave 11. Transformation of 12 into 19 was accomplished via a five-step reaction sequence. The reaction of 19 with the lithium alkoxide of 2-lithio-2-propenol afforded (+)-7-hydroxycostol (2), whose oxidation with manganese dioxide gave rise to (+)-7-hydroxycostal (1).  相似文献   

11.
Asymmetric hydrolysis of acetate (10) of (±)-t-2,t-4-dimethyl-r-l-cyclohexanol with Bacillus subtilis var. niger gave (?)-(lS,2S,4S)-2,4-dimethyl-l-cyclohexanol (6a) and (+)-(1R,2R,4R)-acetate (10b) with high optical purities. Optically pure (?) and (+)-alcohols (6a and 6b) were prepared via corresponding 3,5-dinitrobenzoates. Oxidation of alcohols (6a and 6b) with chromic acid gave optically pure (?)-(2S,4S) and (+)-(2R,4R)-2,4-dimethyl-l-cyclohexanones (2a and 2b), respectively.  相似文献   

12.
Abstract

Biocatalytic transformation represents a green approach to the asymmetric hydrogenation of activated alkenes. This paper details catabolic events after the addition of (?)-carvone or (+)-carvone to submerged cultures of Penicillium citrinum and Fusarium oxysporium. These microorganisms were shown to biotransform the isomers of carvone, leading to the formation of a diastereoisomeric excess of derivatives of carvone and reduced carveols, and also to isomerize both dihydrocarvone, and their derivatives dihydrocarveols.  相似文献   

13.
Abstract

3,5-dihydroxy-4-(hydroxymethyl)-1-cyclohexanyl adenine has been synthesized starting from (-)-carvone. The adenine base was introduced via Mitsunobu reaction. Conformational analysis showed that the base still adopts the equatorial position at the expence of three axial substituents.  相似文献   

14.
Abstract

To clarify the structures of biotransformation products and metabolic pathways, the biotransformation of monoterpenoids, (+)- and (?)-camphorquinone (1a and b), has been investigated using Aspergillus wentii as a biocatalyst. Compound 1a was converted to (?)-(2S)-exo-hydroxycamphor (2a), (?)-(2S)-endo-hydroxycamphor (3a), (?)-(3S)-exo-hydroxycamphor (4a), (?)-(3S)-endo-hydroxycamphor (5a), and (+)-camphoric acid (6a). Compound 1b was converted to (+)-(2R)-exo-hydroxycamphor (2b), (+)-(2R)-endo-hydroxycamphor (3b), (+)-(3R)-exo-hydroxycamphor (4b), (+)-(3R)-endo-hydroxycamphor (5b), and (?)-camphoric acid (6b). Compound 1a mainly produced 2a (65.0%) with stereoselectivity, whereas 1b afforded 3b (84.3%) with high stereoselectivity. These structures were confirmed by gas chromatography–mass spectrometry, infrared, 1H nuclear magnetic resonance (NMR), and 13C NMR spectral data. The products illustrate the marked ability of A. wentii for enzymatic oxidation and ketone reduction.  相似文献   

15.
(R,S)-trans-8-Hydroxy-2-[N-n-propyl-N-(3′-iodo-2′-propenyl)amino]tetralin 7 , a new radioiodinated ligand based on 8-OH-DPAT, was reported as a potential ligand for 5-HT1A receptors. The optically active (+)-(R)- and (?)-(S)- 7 were prepared to investigate the stereoselectivity of (R,S)- 7 . Racemic intermediate 8-methoxy-2-N-n-propyltetralin was reacted with the acyl chloride of (?)-(R)-O-methylmandelic acid to form a mixture of (S,R)- and (R,R)-diastereoisomers, which were separated by flash column chromatography. After removing the N-acyl group from the diastereoisomers, the desired (+)-(R)-or (?)-(S)- 7 was obtained by adding an N-iodopropenyl group. In vitro homogenate binding studies showed the stereoselectivity of this new compound for 5-HT1A receptors. (+)-(R)- 7 isomer displayed 100-fold higher affinity than the (?)-(S)- 7 isomer. Biochemical study indicated that (+)-(R)- 7 potently inhibited forskolin-stimulated adenylyl cyclase activity in hippocampal membranes (Emax and EC50 were 24.5% and 5.4 nM, respectively), while (?)-(S)- 7 showed no effect at 1 μM. The radioiodinated (+)-(R)- and (?)-(S)-[125I] 7 were confirmed by coelution with the resolved unlabeled compound on HPLC (reverse phase column PRP-1, acetonitrile/pH 7.0 buffer, 80/20). The active isomer, (+)-(R)-[125I] 7 , displayed high binding affinity to 5-HT1A receptors (Kd = 0.09 ± 0.02 nM). In contrast, the (?)-(S)- 7 isomer displayed a significantly lower affinity to the 5-HT1A receptor (Kd > 10 nM). Thus, (+)-(R)-[125I]trans-8-OH-PIPAT, (+)-(R)- 7 , an iodinated stereoselective 5-HT1A receptor agonist, is potentially useful for study of in vivo and in vitro function and pharmacology of 5-HT1A receptors in the central nervous system. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Epimerization of (?)-isodihydrocarvone (I) to (?)-dihydrocarvone (II) by Pseudomonas fragi IFO 3458 was studied. I was easily epimerized to II by the growing cells, the resting cells or the cell-free extracts.

An epimerase catalyzing the conversion of I to II was partially purified from the bacterial extracts about 56-fold with heat-treatment, ammonium sulfate precipitation and DEAE-Sephadex A-50 column chromatography. By the action of this epimerase, the ratio of I to II becomes about 25: 75 (K=3). It appeared that the epimerase is very stable to heat; the activity of epimerization remains 66 and 36% after treatment at 97°C for 60 and 120 min, respectively.  相似文献   

17.
The effects of (±)-, (+)-, and (?)-atenolol, sotalol, and amosulalol alone on the rat left atria and portal vein and on the respective β1- and β2-adrenoceptor-mediated responses to isoprenaline have been determined. (±)-Atenolol at 10?6 M had no effect whereas high concentrations of (+)- and (?)-sotalol, 10?5–10?4 M, and (±)-, (+)-, and (?)-amosulalol depressed the response of the rat left atria to cardiac stimulation which indicates membrane stabilizing activity. None of the drugs tested had any effect alone on the rat portal vein. The order of potency as antagonists was (±)-amosulalol > (±)-atenolol > (±)-sotalol at β1-adrenoceptors and (±)-amosulalol > (±)-sotalol > (±)-atenolol at β2-adrenoceptors. (±)-Atenolol and (±)-amosulalol are β1-selective whereas (±)-sotalol is β2-selective. For each of the racemic β-blockers, the β1- and β2-adrenoceptor blocking activity was predominantly due to the (?)-enantiomer. © 1993 Wiley-Liss, Inc.  相似文献   

18.
The racemic, (+)- and (—)-forms of cyanofenphos (O-p-cyanophenyl O-ethyl phenylphosphonothioate) were rapidly metabolized in the rat by cleavage of P-O-aryl linkage, cleavage of P-O-alkyl linkage and conjugation of p-cyanophenol with sulfuric acid. There was a marked difference in the proportion of the major urinary metabolites, p-cyanophenol and p-cyanophenyl sulfate, with three forms of cyanofenphos,

The three forms of cyanofenphos were metabolized at almost equal rates in rat liver microsomes-NADPH system. (+)-Cyanofenphos underwent oxidation of P=S to P = O and cleavage of P-O-aryl linkage predominantly. In contrast, the (?)-isomer was converted to the corresponding oxon analog by mixed function oxidase, and then the oxon analog was rapidly hydrolyzed to p-cyanophenol by mícrosomaî arylesterase-type enzyme. This microsomal enzyme had a remarkable selectivity in hydrolyzing (?)-cyanofenphos oxon versus the ( + )-isomer. Stereoselectivity in the metabolism of the cyanofenphos isomers in the rat appears likely to be mainly due to selective hydrolysis of the (?)-oxon analog by the arylesterase-type enzyme.  相似文献   

19.
The synthesis of optically pure compounds is increasingly in demand among the pharmaceutical, fine chemical and agro-food industries, while the importance of chirality in the activity and biological properties of many compounds has previously been established. The aim of the present study was therefore to evaluate the biotransformation capacities of (+)-carvone and (?)-carvone using the fungi Scolecobasidium sp, three lines of Cladosporium sp, Phoma sp, Aureobasidium sp and Epicoccum sp, all obtained from human skin. The seven fungi evaluated were capable of hydrogenating the activated alkene, followed by the reduction of ketone to chiral alcohol, with conversions between 9.5 and 100%, and with diastereomer excess (d.e.) of over 89% of dihydrocarveol when (+)-carvone was used as a substrate. These results demonstrate that the filamentous fungi of human skin are potential biocatalytic tools for obtaining chiral alcohols.  相似文献   

20.
Synthesis of (?)-bevantolol hydrochloride from 3,4-dimethoxyphenethylamine and (S)-(+)-m-tolyl glycidyl ether derived from (R)-(?)-epichlorohydrin established the absolute configuration of the (+) and (?) enantiomer as R and S, respectively. The purity of the enantiomers was determines using a chiral cellulose column (CHIRALCEL OD®) which allowed direct separation of the enantiomers. A separation factor (α) of 4.20 and a resolution factor (Rs) of 9.21 were obtained. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号