首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The metabolism of leukotriene (LT)C4 and its major routes of elimination have been studied in four anesthetized domestic pigs administered intravenous [3H]-LTC4 (0.5 μCi/kg). The kinetic profile of LTC4 in the blood was followed for 60 min after administration while the biliary and urinary excretion of LTC4 and its metabolites were determined over a 120 min interval. The total recovery of radioactivity in bile and urine was 45% ± 1 (n = 3) and 18% (n = 2) respectively. Examination of the radioactive metabolites in bile showed LTD4 (44% of biliary content) and LTE4 (21% of biliary content) as the major identified lipoxygenase products at t (27 min). The only identified cysteinyl leukotriene observed in the urine was LTE4 (13% of urinary content). In both bile and urine substantial amount of radioactivity were detected at the solvent front of the reverse phase chromatographic system indicating the presence of additional unidentified metabolites. We suggest that measurement of metabolites using these sampling methods may be useful for the detection and measurement of peptide leukotriene production .  相似文献   

2.
cis-3,4-Methylene hexanedioic acid has been discovered in human urine. It has been isolated and identified by mass spectrometry and synthesis. The daily excretion in nine subjects on a free diet was 88 mumol/day (range, 32 to 144 mumol/day). cis-3,4-Methylene hexanedioic acid was given orally to a rat. About 90% of the dose was recovered unchanged in the urine within 24 h. Intragastric administration of cis-9,10-methylene [9,10-3H2]octadecanoic acid to rats gave four labeled urinary metabolites. The major one was cis-3,4-methylene hexanedioic acid, the others were 2,3-methylene pentanedioic acid and isomers of methylene heptanedioic acid and methylene octanedioic acid. Within 72 h, about 40% of the administered radioactivity could be recovered from the urine and another 40% from the carcass. About 20% of the recovered radioactivity was found to be water. Of the radioactivity administered to rats orally as cis-9,10-methylene [9,10-3H2]octadecanoic acid methyl ester, about 50% could be recovered from the lymph of the thoracic duct within 9 h. Intraperitoneal administration of cis-9,10-methylene octodecanoic acid methyl ester to rats gave the same metabolites. Of the given amount, 50 mol % could be recovered from the urine as cis-3,4-methylene hexanedioic acid and 19 mol % as homologues within 38 days.  相似文献   

3.
The pattern of eicosanoid metabolites appearing in urine and feces following oral administration of radioactive arachidonic acid was investigated using rats deficient in essential fatty acids. About 70–80% of the radioactivity in the urine during the first day after feeding was adsorbed to XAD-2 resin and he represented eicosanoid metabolites, whereas the rest of the radioactivity was mainly 3H2O. The eicosanoid metabolites were fractioned into different polarity classes using reverse phase Sep-Pak C18 cartridges. Gas chromatographic analysis of the urinary metabolites following their derivatization into methyl ester-methoxime- -butyl-dimethylsilyl ethers revealed that nearly one-half of the metabolites had ECL values less than 22 and represented metabolites more oxidized than commonly described. Only 30% of the metabolites had ECL values between 26 to 32, corresponding to the values for the metabolites that originate from exogenously infused prostaglandins. A large portion of the eicosanoid metabolites was also excreted with the feces. The isotropic patterns from the reverse phase chromatography indicated that many of the fecal metabolites may be similar to those in urine although some metabolites in feces were not present in urine. Based on the specific radioactivity of the administered arachidonic acid, it appeared that at least 6 to 8 mg of eicosanoid metabolites were excreted through urine and feces within 24 hrs following an oral bolus of 60 mg arachidonic acid. The rapid increase and subsequent decrease in eicosanoid metabolite excretion after oral administration of arachidonate indicates that the dietary intake of polyunsaturated fatty acids may have a more rapid effect upon the endogenous production of eicosanoids than is generally recognized.  相似文献   

4.
The binding of ethyl carbamate labelled with carbon-14 in the alkyl or carbonyl group, and of methyl, n-butyl and n-propyl carbamates labelled in the alkyl group, to the DNA of mouse liver, lung and kidney has been studied in male Crackenbush mice. Only ethyl carbamate bound to liver and kidney DNA to any significant extent.The binding of ethyl carbamate labelled with carbon-14 in the C1, C2 or the carbonyl position was examined and compared. The levels of binding of [1-14C]- and [2-14C]ethyl carbamate to liver DNA were not significantly different (328 ± 34 and 267 ± 24 dpm/mg DNA, respectively), but there was very little binding of the [carbonyl-14C]ethyl carbamate (26 ± 3 dpm/mg DNA). Furthermore, only 18% of the radioactivity was removed from the DNA labelled with the alkyl-labelled carbamates, whereas 65% of the radioactivity was removed from the DNA labelled with carbonyl-labelled ethyl carbamate on continuous ether extraction. It was concluded that the bound molecule does not contain the carbonyl carbon and is probably an ethyl group.  相似文献   

5.
1. The kinetics of the interaction of erythrocyte cholinesterase with 1-naphthyl N-methylcarbamate, 2-isopropoxyphenyl N-methylcarbamate and phenyl N-methylcarbamate were studied. Rate constants for inhibition and rate constants for spontaneous reactivation were determined. The calculated rate constants for spontaneous reactivation agreed well with those obtained experimentally. 2. The degree of inhibition obtained after preincubation of enzyme and inhibitor was found to be independent of both the substrate concentration and the dilution of the inhibited enzyme. 3. The reaction between the enzyme and the inhibitor was consistent with carbamates being regarded as poor substrates of cholinesterases. There was no evidence for the formation of a reversible complex between the enzyme and the carbamate.  相似文献   

6.
The metabolism of i.v. estriol was investigated in two intact baboons and four with biliary fistulas. Urine and bile samples were collected periodically and the radioactivity extracted by Amberlite-XAD resin. Metabolites were separated and purified by a combination of DEAE-Sephadex chromatography, celite partition, specific enzyme hydrolysis of the conjugates and identification of the aglycones. The excretion and metabolism of estriol in the animals closely resembled those of the human. Intact animals excreted an average of 50% of the radioactivity in the urine during 12 hours and two animals with biliary drainage excreted an average of 40% in the urine and 49% in the bile. When the steroid was injected into the portal vein an average of 11.5% and 84% were excreted in the urine and bile, respectively.In the urine of intact animals, approximately 65.8% of the radioactivity was in the form of E3-16G; 14.2% as E3-3G; 13.4% as E3-3S and 5.1% as E3-3S-16G. Over 73% of biliary radioactivity from the peripheral injections was made up of E3-3S-16G and 3.6% as E3-16G and 8.3% as 3-sulfate. In the urine,however, 57% of the label was made up of E3-16G. No radioactive E3-3G was detected in the bile of any of the animals. Following simultaneous injection of 3H-E3 peripherally and 14C-E3 intraportally, the 3-glucosiduronate excreted in the urine was derived exclusively from the 3H-label. Based on the results obtained, the baboon has been shown to metabolize estriol in the same fashion as the human, with E3-3S-16G as the predominant biliary metabolite and E3-16G as the major urinary metabolite. As in the human, evidence was also found for an enterohepatic circulation of e3 in the baboon, 16-glucuronidation in the kidney, and extrahepatic (enteric?) formation of E3-3G. In vitro incubation of the baboon liver yielded 94% of the total conjugate as E3-16G without any trace of E3-3G.  相似文献   

7.
A gas chromatographic method with nitrogen–phosphorus detection involving a solid–liquid extraction phase was developed and validated for the simultaneous quantification of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) in plasma. A modification of this method was validated for the analysis of MDMA, MDA, 4-hydroxy-3-methoxymethamphetamine (HMMA) and, 4-hydroxy-3-methoxyamphetamine (HMA) in urine. Under the analytical conditions described, the limits of detection in plasma and urine were less than 1.6 μg/l and 47 μg/l, respectively, for all the compounds studied. Good linearity was observed in the concentration range evaluated in plasma (5–400 μg/l) and urine (100–2000 μg/l) for all compounds tested. The recoveries obtained from plasma were 85.1% and 91.6% for MDMA and MDA, respectively. Urine recoveries were higher than 90% for MDMA and MDA, 74% for HMMA, and 64% for HMA. Methods have been successfully used in the assessment of plasma and urine concentrations of MDMA and its main metabolites in samples from clinical studies in healthy volunteers.  相似文献   

8.
We have identified the structure of phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) in human platelets. These lipids accounted for less than 2% of the total 32P incorporated into inositol phospholipids in the platelets. All three lipids were labeled in unstimulated platelets, but incorporation of 32P changed rapidly by 15 s after thrombin stimulation, suggesting that they are important in platelet activation. Specific inositol polyphosphate phosphatases were used to both identify the lipid structures and to determine the route of synthesis of these lipids. During 32P labeling and after thrombin stimulation of human platelets, as much as 60% of the total radioactivity present in PtdIns(3,4)P2 was found in the D-4 phosphate and only 35% in the D-3 phosphate indicating that PtdIns(3)P is the precursor of PtdIns(3,4)P2. In addition, the D-5 and D-4 phosphates of PtdIns(3,4,5)P3 each contained 35-40% of the total radioactivity in the molecule compared with only 18-28% in the D-3 position, suggesting that PtdIns(3,4)P2 and not PtdIns(4,5)P2 is the major precursor of this lipid. These results define the predominant pathway for synthesis of these lipids in platelets as PtdIns----PtdIns(3)P----PtdIns(3,4)P2----PtdIns(3,4,5)P3.  相似文献   

9.
A unique cytosolic enzyme that hydrolyzes the carbamate linkage of the insecticide carbaryl (1-naphthyl N-methylcarbamate) was purified from extracts of Pseudomonas sp. strain CRL-OK. Substrates of the hydrolase include the N-methylcarbamate pesticides carbofuran and aldicarb but not the phenylcarbamate isopropyl m-chlorocarbanilate, the thiocarbamate S-ethyl N,N-dipropylthiocarbamate, or the dimethylcarbamate o-nitrophenyldimethylcarbamate.  相似文献   

10.
A unique cytosolic enzyme that hydrolyzes the carbamate linkage of the insecticide carbaryl (1-naphthyl N-methylcarbamate) was purified from extracts of Pseudomonas sp. strain CRL-OK. Substrates of the hydrolase include the N-methylcarbamate pesticides carbofuran and aldicarb but not the phenylcarbamate isopropyl m-chlorocarbanilate, the thiocarbamate S-ethyl N,N-dipropylthiocarbamate, or the dimethylcarbamate o-nitrophenyldimethylcarbamate.  相似文献   

11.
Tha Amadori rearrangement compound, the product in the early step of the Maillard reaction of proteins with glucose, is known to be degraded into 3-deoxyglucosone (3DG), a 2-oxoaldehyde. In order to elucidate the metabolic pathway of 3DG, [14C]3DG was synthesized from [14C]-glucose and administered to rats orally and intravenously. 2 h after oral administration of [14C]3DG, the percentages of radioactivity (RaI%) in stomach, small intestine and urine were 3.9, 60 and 6.4%, respectively, while RaI% in liver, kidney, spleen, blood and CO2 were less than 0.5%. The absorption rate of 3DG was obviously lower in comparison with that of glucose. 3 h after intravenous administration of [14C]3DG, the RaI% in urine was 72% and those in liver, kidney, spleen, blood and CO2 were less than 1%. It therefore appeared that the absorbed 3DG was not biologically utilized by the rats, but was rapidly excreted in the urine. Some metabolites of [14C]3DG were detected in urine by TLC-autoradiography. The main metabolite was purified and identified as 3-deoxyfructose by FD-MS and 13C-NMR spectroscopy, indicating that the aldehyde group of 3DG was reduced to an alcohol.  相似文献   

12.
An extract of Ginkgo biloba leaves (EGb) was given to healthy volunteers. Urine samples were collected for 3 days, and blood samples were withdrawn every 30 min for 5 h. The samples were purified through SPE C18 cartridges and analyzed by reversed-phase LC–diode array detection for the presence of EGb metabolites. Only urine samples contained detectable amounts of substituted benzoic acids, i.e., 4-hydroxybenzoic acid conjugate, 4-hydroxyhippuric acid, 3-methoxy-4-hydroxyhippuric acid, 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, hippuric acid and 3-methoxy-4-hydroxybenzoic acid (vanillic acid). In contrast to rats no phenylacetic acid or phenylpropionic acid derivatives were found in urine, thus indicating that in humans a more extensive metabolism takes place. As for rats the metabolites found in human urines accounted for less than 30% of the flavonoids given. The same procedure was applied to blood samples, and no metabolites could be detected.  相似文献   

13.
Five - 20 nmoles of [5,6,8,9,11,12,14,15-3H8]leukotriene C4 was injected into three male volunteers. Forty-eight percent of the administered 3H was recovered from urine and 8% from feces, within a 72 hr period. Of the total urinary radioactivity 44% was excreted during the first hour after injection. This activity was mainly found in one compound, designated "I". The radioactivity excreted into urine later than one hour after injection, consisted partly of Compound I and two additional components, and partly of polar, non-volatile material. Compound I was identified as leukotriene E4 by UV-spectroscopy and cochromatographies in three high performance liquid chromatography systems with synthetic reference compounds. A total of 13% of administered radioactivity was excreted in urine as leukotriene E4.  相似文献   

14.
1. [4-(14)C]Cortisone was administered to anaesthetized male cats as a single injection or as a 45-60min. infusion. 2. After the single dose a total of 69.6-89.6% of the radioactivity was excreted in bile, and 0.5-7.1% in urine. After infusion total recovery in bile was 73.4-92.1%, and 1.2-1.7% in urine. 3. When bile and urine samples were hydrolysed successively by beta-glucuronidase, cold acid and hot acid, most of the radioactivity was converted into substances not extractable from neutral aqueous solution by ethyl acetate-ether. 4. In bile, metabolites hydrolysable by beta-glucuronidase were found in only small proportions (3-4%) of the dose.  相似文献   

15.
A tritium-labeled C-terminal fragment of dermorphin (H-Tyr-[3,4-3H]Pro-Ser-NH2) and its isomer (H-Tyr-D-[3,4-3H]Pro-Ser-NH2) with molar radioactivity of 35 Ci/mmol were synthesized, and their pharmacokinetics and metabolism in rat organs were studied after their intramuscular injections. The tripeptides were detected in the blood only for 5 min after the injection, and maximum contents of both compounds (approximately 5% of the total amount of the injected label) were registered in the kidneys after 20 min. Both stereomers were shown to penetrate into the brain. We failed to detect any radioactive metabolite, except proline, due to rapid proteolytic degradation of these peptides.  相似文献   

16.
The fat of less than Glu1-3H-labelled bradykinin-potentiating peptide 9a [BPP9a; less than Glu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro, an inhibitor of angiotensin-converting enzyme (peptidyl dipeptidase)] was studied in the rabbit. After intravenous injection, BPP9a was rapidly removed from blood and much of the associated radioactivity was excreted in urine. Approx. 8% of the radioactivity in urine collected 2h after drug administration occurred in the form of BPP9a itself, the remainder occurring in three lower homologues: less than Glu-Trp (60%), less Glu-Trp-Pro-Arg-Pro-Gln (20%) and less than Glu-Trp-Pro-Arg-Pro-Gln-Ile (12%). Hydrolysis was not accounted for by enzymes in blood or urine. Apparently hydrolysis occurred within the kidney, as less than Gl-Trp was obtained in 60% yield in urine of isolated rat kidney perfused with [less than Glu1-3H]BPP9a.  相似文献   

17.
A mixture of N-acetyl-[4,5,6,7,8,9-14C]neuraminosyl-alpha (2-3(6]-galactosyl-beta (1-4-glucose[( 14C]sialyl-lactose) and N-acetylneuraminosyl-alpha (2-3(6]-galactosyl-beta(1-4)-glucit-1-[3H]ol(sialyl-[3H]lactitol) as well as porcine submandibular gland mucin labeled with N-acetyl- and N-glycoloyl-[9-(3)H]neuraminic acid were administered orally to mice. The distribution of the different isotopes was followed in blood, tissues and excretion products of the animals. One half of the [14C]sialyl-lactose/sialyl-[3H]lactitol mixture given orally was excreted unchanged in the urine. The other half was hydrolysed by sialidase and partly metabolized further, followed by the excretion of 30% of the 14C-radioactivity as free N-acetyl-[4,5,6,7,8,9-14C]neuraminic acid and 60% of this radioactivity in the form of non-anionic compounds including expired 14CO2 within 24 h. The 14C-radioactivity derived from the [14C]sialyl-lactose/sialyl-[3H]lactitol mixture which remained in the bodies of fasted mice after 24 h was less than 1%. In the case of well-fed mice, a higher amount of the sialic acid residues was metabolized. The bulk of radioactivity of the mucin was resorbed within 24 h. About 40% of the radioactivity administered was excreted by the urine within 48 h; 30% of this radioactivity represented sialic acid and 70% other anionic and non-anionic metabolic products. 60% of the radioactivity administered remained in the body, and bound 3H-labeled sialic acids were isolated from liver. Sialyl-alpha (2-3)-[3H]lactitol was injected intravenously into rats; the substance was rapidly excreted in the urine without decomposition. These studies show that part of the sialic acids bound to oligosaccharides and glycoproteins can be hydrolysed in intestine by sialidase and be resorbed. This is followed either by excretion as free sialic acid or by metabolization at variable degrees, which apparently depends on the compound fed and on the retention time in the digestive tract.  相似文献   

18.
A relatively simple reversed-phase high-performance liquid chromatographic method for the determination of the polar metabolites of nifedipine in biological fluids is described. After conversion of 2-hydroxymethyl-6-methyl-4-(2-nitrophenyl)pyridine-3,5-dicarboxylic acid 5-methyl ester (IV) into 5,7-dihydro-2-methyl-4-(2-nitrophenyl)-5-oxofuro[3,4-b]pyridine-3-carboxylic acid methyl ester (V) by heating under acidic conditions, V was extracted with n-pentane—dichloromethane (7:3) and analysed on a C18 column with ultraviolet detection. Subsequently, 2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylic acid monomethyl ester (III) was extracted with chloroform and analysed on the same system. Limits of determination in blood were 0.1 μg/ml for III and 0.05 μg/ml for IV and V; these limits were two to ten times higher for urine. This inter-assay variability was always less than 7.5%.  相似文献   

19.
The metabolic fate of chlormadinone acetate (17alpha-acetoxy-6-chloro-4, 6-pregnadiene-3, 20-dione; CAP) was studied in intact and biliary fistula baboons. The steroid was labeled with 3H at position 1 and with 14C at the carboxyl moiety of the 17alpha-acetate, thus affording the opportunity to ascertain the loss of the 17alpha-acetoxy group and the fate of both labels. The averages of the radioactivity excreted, given as percentages of the amounts injected, and the standard deviations were as follows: In the urine of intact animals after 6 hours, 5.7 +/- 0.2% and 5.5 +/- 0.7% of the 3H and 14C were recovered, respectively. After 6 days, there was 17.5% of the 3H and 16.2% of the 14C in the urine plus 15.3% of the 3H and 16.4% of the 14C in the feces. In baboons with biliary fistulas, the total radioactivity excreted was 7.8 +/- 0.7% of the 3H and 11.6% of the 14C in the urine, and 30.9 +/- 4.4% of the 3H and 30.7% of the 14C in the bile after 6 hours. Glucosiduronates were the predominant conjugates in the urine and bile. The similarity in the urinary excretion of radioactivity in the first 6 hours in intact and biliary fistula animals, the relatively low excretion of radioactivity in the bile and after 6 days in the urine, and the low fecal excretion suggest that the metabolites of CAP are not involved in an extensive enterohepatic circulation in the baboon. Deacetylation of the 17alpha-acetate in CAP was detected in the early collection periods of the urine and bile and constituted a very small percentage of the injected compound. No significant oxygenation of CAP at position 1 was detected. The metabolism of CAP is discussed and compared to our previously reported data on the metabolism of progesterone, ethynodiol diacetate and medroxyprogesterone acetate and the data on other progestogens reported in the literature. It appears that the excretion of CAP is significantly slower in the baboon than that of the other progestogens. The amounts of glucosiduronates of CAP and/or its metabolites formed in vivo are less than those formed with the other progestogens. Also, the extent of deacetylation of the 17alpha-acetate of CAP is much less than that of the 3beta-acetate of ethynodiol diacetate.  相似文献   

20.
Abstract: Present techniques are unable to provide a sensitive and accurate index of noradrenergic activity in the rat preoptic area. In this study, we have examined the brainstem A1 noradrenergic input to the preoptic area using a new technique whereby [3H]noradrenaline is preloaded into the preoptic area and release of radioactivity from this region is measured subsequently using microdialysis in vivo. Electrical stimulation of the ipsilateral A1 area for 20 min at 5, 10, and 15 Hz evoked significant increases in dialysate radioactivity that were repeatable and frequency-dependent. After removal of calcium from the perfusion medium, basal release of radioactivity was markedly reduced and the effect of A1 stimulation abolished. Changing to a 100 mM K+ medium evoked an increase in the release of radioactivity that was sixfold greater than that seen after A1 stimulation. Separation of the dialysate with HPLC showed that 33% of the increase in measured radioactivity after A1 stimulation was directly attributable to [3H]noradrenaline and the remainder to the metabolites vanillylmandelic acid, 3,4-dihydroxymandelic acid, and 3,4-dihydroxyphenylglycol. In contrast, the increase in radioactivity after K+ depolarization was due almost completely to [3H]noradrenaline. Addition of 10 μM clonidine to the perfusion medium markedly reduced basal release of radioactivity, but had no effect on evoked release following A1 stimulation. Conversely, perfusion with 10 μM yohimbine had no effect on basal release, but significantly increased evoked release after A1 stimulation. These results now provide a characterization of noradrenergic activity in the preoptic area and indicate the importance of the A1 noradrenergic input to this region. The technique of measuring radioactivity with microdialysis after preloading with [3H]noradrenaline provides a relatively simple, sensitive index of noradrenergic activity in vivo with good temporal resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号