首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antibiotic kanamycin was degraded with methanolic hydrogen chloride and was determined to be composed of three compounds: deoxystreptamine, 6-amino-6-deoxy-d-glucopyranose and 3-amino-3-deoxy-d-glucopyranose. From the chemical and physical data on the antibiotic and its fragments, kanamycin was shown to be O-α-6-amino-6-deoxy-d-glucopyranosyl-(1→4 or 6)-O-[α-3-amino-3-deoxy-d-glucopyranosyl-(1→6 or 4)]-1,3-diamino-1, 2, 3-trideoxy-myo-inositol.  相似文献   

2.
The synthesis of 7-deoxy-d-glycero-d-gluco-heptose (1) from 3,5-O-benzylidene-1,2-O-isopropylidene-α-d-glucofuranose (2) is described. Oxidation of compound (2) afforded 3,5-O-benzylidene-1,2-O-isopropylidene-α-d-gluco-hexodialdo-1,4-furanose (3), which was then treated with methylmagnesium iodide to give 3,5-O-benzylidene-1,2-O-isopropylidene-7-deoxy-α-d-glycero-d-gluco-heptose (4) and its l-glycero-d-gluco isomer (5). Hydrolysis of (4) produced compound (1), which was identical with natural SF-666 A, a fermentation product of Streptomyces setonensis nov. sp.  相似文献   

3.
The substrate specificity of α-d-xylosidase from Bacillus sp. No. 693–1 was further investigated. The enzyme hydrolyzed α-1,2-, α-1,3-, and α-1,4-xylobioses. It also acted on some heterooligosaccharides such as O-α-d-xylopyranosyl-(1→6)-d-glucopyranose, O-α-d-xylopyranosyl-(1→6)-O-β-d-glucopyranosyl-(1→4)-d-glucopyranose, O-α- d-xylopyranosyl-(1→6)-O-d-glucopyranosyl-(1→4)-O-[α-d-xylopyranosyl-(1→6)]-d-glucopyranose, and O-α-d-xylopyranosyl-(1→3)-l-arabinopyranose. The enzyme was unable to hydrolyze tamarinde polysaccharides although it could hydrolyze low molecular weight substrates with similar linkages.  相似文献   

4.
The mechanism of asymmetric production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 was examined by investigating the properties of the enzymes involved in the hydrolysis of dl-5-substituted hydantoins. The enzymatic production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 involved the following two successive reactions; the d-isomer specific hydrolysis, i.e., the ring opening of d-5-substituted hydantoins to d-form N-carbamyl amino acids by an enzyme, d-hydantoin hydrolase (d-HYD hydrolase), followed by the d-isomer specific hydrolysis, i.e., the cleavage of N-carbamyl-d-amino acids to d-amino acids by an enzyme, N-carbamyl-d-amino acid hydrolase (d-NCA hydrolase).

l-5-Substituted hydantoins not hydrolyzed by d-HYD hydrolase were converted to d-form 5- substituted hydantoins through spontaneous racemization under the enzymatic reaction conditions.

It was proposed that almost all of the dl-5-substituted hydantoins were stoichiometrically and directly converted to the corresponding d-amino acids through the successive reactions of d-HYD hydrolase and d-NCA hydrolase in parrallel with the spontaneous racemization of l-5-substituted hydantoins to those of dl-form.  相似文献   

5.
d-Ribose-5-phophate ketol-isomerase (EC 5.3.1,6), d-ribuIose-5-phosphate 3-epimerase (EC 5.1.3.1) and d-sedoheptulose-7-phosphate: d-gIyceraldehyde-3-phosphate glycolaldehyde-transferase (EC 2.2.1,1) have been partially purified. d-Ribose-5-phosphate ketol-isomerase was purified from spinach by column chromatography with DEAE-cellulose and DEAE-Sephadex A-50; d-ribulose-5-phosphate 3-epimerase was purified from baker’s yeast by column chromatography with DEAE-cellulose; and d-sedoheptulose-7-phosphate: d-glyceraldehyde-3-phosphate glycolaldehydetransferase was purified from a Bacillus species No. 102 mutant G3–46–22–6 by column chromatography with DEAE-cellulose. The preparations were used for the determination of the activities of these enzymes in the parent and d-ribose-forming mutants of a Bacillus species.  相似文献   

6.
Degradation mechanisms of d-fructose by the interaction with amino acids or organic acids in aqueous solution at initial pH 5.5 heated at 100°C were investigated and a substantial difference in mechanisms between fructose degradation and glucose-glycine reaction was presented. d-Fructose browned more intensely than did d-glucose in lower concentration of glycine and/or in earier stage of reaction period. By catalytic action of carboxylate anions without any condensation with amino groups, d-fructose was decomposed to 3-deoxy-d-erythrohexosulose, 5-(hydroxymelhyl)-2-furaldehyde, and a less amount of pyruval-dehyde through caramelization. It was considered that the main path of fructose degradation was 1,2-enolization but 2,3-enolization would also occur to a little extent.  相似文献   

7.
Partial acid hydrolysis of Saccharomyces cerevisiae mannan gave 2-O-α-d-Manp-d-Man (1), 3-O-α-d-Manp-d-Man (2), 6-O-α-d-Manp-d-Man (3), O-α-d Manp-(1→2)O-α-d-Manp-(1→2)-d-Man (4), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-d-Man (5), O-α-d Manp-(1→6)-6-O-α-d-Manp-(1→6)-d-Man (6), O-α-d Manp-(1→2)-O-α-d-Manp-(1→2)-6-O-α-d-Manp-(1→6)-d-Man (7), O-α-d-Manp-(1→2)-O-α-d-Manp-(1→6)-O-α-d-Manp-(1→6)-d-Man (8), and O-α-d-Manp-(1→6)-O-[α-d-Manp-(1→2)]-O-α-d-Manp-(1→6)-d-Man (9).  相似文献   

8.
Corynebacterium sp. SHS 0007 accumulated 2-keto-l-gulonate and 2-keto-d-gluconate simultaneously with 2,5-diketo-d-gluconate utilization. This strain, however, possibly metabolized 2,5- diketo-d-gluconate through two pathways leading to d-gluconate as a common intermediate: via 2- keto-d-gluconate, and via 2-keto-l-gulonate, l-idonate and 5-keto-d-gluconate. A polysaccharide- negative, 2-keto-l-gulonate-negative and 5-keto-d-gluconate-negative mutant produced only calcium 2-keto-l-gulonate from calcium 2,5-diketo-d-gluconate, in a 90.5 mol% yield. The addition of a hydrogen donor such as d-glucose was essential for its production. This mutant possessed the direct oxidation route of d-glucose to d-gluconate, the pentose cycle pathway and a possible Embden-Meyerhof-Parnas pathway, indicating that d-glucose was metabolized through these three pathways and provided NADPH for the reduction of 2,5-diketo-d-gluconate.  相似文献   

9.
New synthetic methods for the preparation of 6-deoxy-1,2-O-isopropylidene-α-d-xylo-hexofuranos-5-ulse (VIa) were described.

Methyl 2,3,4-tri-O-benzoyl-6-deoxy-α-d-arabino-hex-5-enopyranoside (IIIa) was synthesized starting from methyl α-d-altroside (IIa). This enose derivative (IIIa) was hydrolyzed to methyl 6-deoxy-α-d-arabino-hex-5-enopyranoside (IIIb), and then converted with acid into 6-deoxy-d-arabino-hexofuranos-5-ulose (I), the sugar component of antibiotic hygromycin A.  相似文献   

10.
A pectin isolated from tobacco midrib contained residues of d-galacturonic acid (83.7%), L-rhamnose (2.2%), l-arabinose (2.4%) and d-galactose (11.2%) and small amounts of d-xylose and d-glucose. Methylation analysis of the pectin gave 2, 3, 5-tri- and 2, 3-di-O-methyl-l-arabinose, 3, 4-di- and 3-O-methyl-l-rhamnose and 2, 3, 6-tri-O-methyl-d-galactose. Reduction with lithium aluminum hydride of the permethylated pectin gave mainly 2, 3-di-O-methyl-d-galactose and the above methylated sugars. Partial acid hydrolysis gave homologous series of β-(1 → 4)-linked oligosaccharides up to pentaose of d-galactopyranosyl residues, and 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, and di- and tri-saccharides of α-(1 → 4)-linked d-galactopyranosyluronic acid residues.

These results suggest that the tobacco pectin has a backbone consisting of α-(1 → 4)-linked d-galactopyranosyluronic acid residues which is interspersed with 2-linked l-rhamnopyranosyl residues. Some of the l-rhamnopyranosyl residues carry substituents on C-4. The pectin has long chain moieties of β-(1 → 4)-linked d-galactopyranosy] residues.  相似文献   

11.
During an examination of components contributing to the bitter taste of asparagus bottom cut (Asparagus officinalis L.), two new furostanol saponins were isolated from roots extractives. Their chemical structures were established as 5β-furostane-3β,22,26 triol-3-O-β-d-glucopyranosyl (1→2)-β-d-glucopyranoside 26-O-β-d-glucopyranoside and 5β-furostane-3β,22,26 triol-3-O-β-d-glucopyranosyl (1→2) [β-d-xylopyranoxyl (1→4)]-β-d-glucopyranoside 26-O-β-d-glucopyranoside respectively.  相似文献   

12.
To investigate the substrate specificity of α-l-rhamnosidase from Aspergillus niger, the following seven substrates were synthesized: methyl 3-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (1), methyl 3-O-α-l-rhamnopyranosyl-α-l-xylopyranoside (2), methyl 3-0-α-l-rhamnopyranosyl-α-l-rhamnopyranoside (3), methyl 4-0-α-l-rhamnopyranosyl-α-d-galactopyranoside (4), methyl 4-O-α-l-rhamnopyranosyl-α-d-mannopyranoside (5), methyl 4-0-α-l-rhamnopyra-nosyl-α-d-xylopyranoside (6), and 6-0-β-l-rhamnopyranosyl-d-mannopyranose (7). Compounds 1~6 were well-hydrolyzed by the crude enzyme, but 7 was unaffected.  相似文献   

13.
A modified procedure for synthesis of sucrose was carried out by using purified crystalline 1,3,4,6-tetra-O-benzoyl-d-fructofuranose in place of 1,3,4,6-tetra-O-acetyl-d-fructofuranose; namely, reaction of 1,2-anhydro-3,4,6-tri-O-acetyl-α-d-glucopyranose with tetrabenzoyl-d-fructose at 110~118°C for 3 hr followed by deacylation, and by chromatographic separation of the deacylated product afforded crude sucrose. Acetylation of the synthetic product gave octaacetate sucrose in the yield of 5.0%.  相似文献   

14.
The cell wall polysaccharide of cotyledon of Tora-bean (Phaseolus vulgaris), which surrounds starch granules, was isolated from saline-extraction residues of homogenized cotyledon, as alkali-insoluble fibrous substance. Alkali-insoluble residue, which had been treated with α-amylase (Termamyl), had a cellulose-like matrix under the electron microscope. It was composed of l-arabinose, d-xylose, d-galactose and d-glucose (molar ratio, 1.0: 0.2: 0.1: 1.2) together with a trace amount of l-fucose. Methylation followed by hydrolysis of the polysaccharide yielded 2, 3, 5-tri-O-methyl-l-arabinose (3.3 mol), 2, 3, 4-tri-O-methyl-d-xylose (1.0 mol), 2, 3-di-O-methyl-l-arabinose (3.7 mol), 3, 4-di-O-methyl-d-xylose (1.0 mol), 2-O-methyl-l-arabinose and 2, 3, 6-tri-O-methyl-d-glucose (12.7 mol), 2, 6-di-O-methyl-d-glucose (1.2 mol) and 2, 3-di-O-methyl-d-glucose (1.0 mol).

Methylation analysis, Smith degradation and enzymatic fragmentation with cellulase and α-l-arabinofuranosidase showed that the l-arabinose-rich alkali-insoluble polysaccharide possesses a unique structural feature, consisting of β-(1 → 4)-linked glucan backbone, which was attached with side chains of d-xylose residue and β-d-galactoxylose residue at O-6 positions and α-(1 → 5)-linked l-arabinosyl side cains (DP=8) at O-3 positions of β-(1 → 4)-linked d-glucose residues, respectively.  相似文献   

15.
The acceptor specificity of amylomaltase from Escherichia coli IFO 3806 was investigated using various sugars and sugar alcohols. d-Mannose, d-glucosamine, N-acetyl- d-glucosamine, d-xylose, d- allose, isomaltose, and cellobiose were efficient acceptors in the transglycosylation reaction of this enzyme. It was shown by chemical and enzymic methods that this enzyme could transfer glycosyl residues only to the C4-hydroxyl groups of d-mannose, iY-acetyl- d-glucosamine, d-allose, and d-xylose, producing oligosaccharides terminated by 4–0-α-d-glucopyranosyl-d-mannose, 4–0-α-d-glucopyranosyl-yV-acetyl-d-glucosamine, 4-O-α-d-glucopyranosyl-d-allose, and 4–0-α-d-gluco- pyranosyl-d-xylose at the reducing ends, respectively.  相似文献   

16.
The crystalline d-mannitol dehyrogenase (d-mannitol:NAD oxidoreductase, EC 1.1.1.67) catalyzed the reversible reduction of d-fructose to d-mannitol. d-Sorbitol was oxidized only at the rate of 4% of the activity for d-mannitol. The enzyme was inactive for all of four pentitols and their corresponding 2-ketopentoses. The apparent optimal pH for the reduction of d-fructose or the oxidation of d-mannitol was 5.35 or 8.6, respectively. The Michaelis constants were 0.035 m for d-fructose and 0.020 m for d-mannitol. The enzyme was also found to be specific for NAD. The Michaelis constans were 1 × 10?5 m for NADH2 and 2.7 × 10?4 m for NAD.  相似文献   

17.
The α-d-galactosidases of six Streptomyces strains were examined on their inducer susceptibility, substate specificity, and inhibitor susceptibility. In all strains examined, α-d-galactosidase was induced by d-galactose, but neither by d-fucose nor by l-arabinose. α-d-Fucosidase activity was always induced accompanying with α-d-galactosedase activity. β-l-Arabinosidase activity, however, was never observed. These α-d-galactosidases were purified to electrophoretically pure degree by successive ammonium sulfate and ethanol precipitation, and ion exchange and gel filtration chromatography. The purified preparations from six strains were different from each other in their chromatographic behaviors and in some physical properties, but they all showed strong α-d-fucosidase activity as well. The α-d-galactosidase activities were strongly inhibited by d-galactose and l-arabinose, but scarcely by d-fucose. On the other hand, their α-d-fucosidase activities were inhibited by d-fucose as well as by d-galactose and l-arabinose.  相似文献   

18.
ABSTRACT

Maltose phosphorylase (MP), a glycoside hydrolase family 65 enzyme, reversibly phosphorolyzes maltose. In this study, we characterized Bacillus sp. AHU2001 MP (MalE) that was produced in Escherichia coli. The enzyme exhibited phosphorolytic activity to maltose, but not to other α-linked glucobioses and maltotriose. The optimum pH and temperature of MalE for maltose-phosphorolysis were 8.1 and 45°C, respectively. MalE was stable at a pH range of 4.5–10.4 and at ≤40°C. The phosphorolysis of maltose by MalE obeyed the sequential Bi–Bi mechanism. In reverse phosphorolysis, MalE utilized d-glucose, 1,5-anhydro-d-glucitol, methyl α-d-glucoside, 2-deoxy-d-glucose, d-mannose, d-glucosamine, N-acetyl-d-glucosamine, kojibiose, 3-deoxy-d-glucose, d-allose, 6-deoxy-d-glucose, d-xylose, d-lyxose, l-fucose, and l-sorbose as acceptors. The kcat(app)/Km(app) value for d-glucosamine and 6-deoxy-d-glucose was comparable to that for d-glucose, and that for other acceptors was 0.23–12% of that for d-glucose. MalE synthesized α-(1→3)-glucosides through reverse phosphorolysis with 2-deoxy-d-glucose and l-sorbose, and synthesized α-(1→4)-glucosides in the reaction with other tested acceptors.  相似文献   

19.
An enzyme preparation from glutinous millet grains has been found to synthesize various riboflavin glycosides from riboflavin and disaccharides other than maltose (such as cellobiose, melibiose and lactose). Each of these riboflavin glycosides has been isolated in crystalline form and shown to have the structure, 5′-D-riboflavin-β-d-glucopyranoside, 5′-d-riboflavin-α-d-galactopyranoside and 5′-d-riboflavin-β-D-galactopyranoside.  相似文献   

20.
The structure of an acidic polysaccharide elaborated by Bacillus polymyxa S-4 was investigated in relation to its physiological activity, particularly, its hypocholesterolemic effect on experimental animals. The polysaccharide is composed of d-glucose, d-mannose, d-galactose, d-glucuronic acid, and d-mannuronic acid (molar ratio 3:3:1: 2:1). Methylation and fragmentation analyses, such as Smith degradation and partial acid hydrolysis showed that the polysaccharide has a complicated, highly branched structure, consisting mainly of (1 → 3)- and (1 → 4)-d-glycosidic linkages. The backbone chain containing d-glucuronic acid, d-mannose, and d-galactose residues is attached at the C-3, C-4, and C-4 positions, respectively, with side chains of single or a few carbohydrate units, which are terminated with d-glucose or d-mannose residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号