首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extracellular nuclease from Bacillus firmus VKPACU-1 was multifunctional enzyme, this nuclease hydrolyzed poly U rapidly and more preferentially than the other homopolyribonucleotides. Hydrolysis of RNA this enzyme released mononucleotides in the order 5′UMP > 5′AMP > 5′GMP where as in hydrolysis of DNA the mononucleotides in the order of 5′dAMP > 5′dGMP > 5′dTMP and oligonucleotides. Uridylic linkages in RNA and adenylic linkages in DNA were preferentially cleaved by the nuclease. Nuclease produced oligonucleotides having only 3’ hydroxyl and 5’ phosphate termini. Present nuclease hydrolyzed RNA and DNA released oligonucleotides as major end products and mononucleotides, suggesting an endo mode of action.  相似文献   

2.
Crystalline nuclease O obtained from autolyzed Aspergillus oryzae hydrolyzed heat-denatured calf thymus DNA 19 times faster than native DNA. Digestion of the heat-denatured DNA with an exess of the enzyme produced mono-, di- and tri-nucleotides with 5′-terminal phosphate, which amounted 3.4, 58.3 and 38.2%, respectively, of total degradation products. Hydrolysis of the native DNA with a sufficient amount of nuclease O produced mono-, di-, tri- and tetra-nucleotides with 5′-terminal phosphate, which amounted 1.9, 47.9, 36.7 and 13.6%, respectively, of total degradation products. Although nuclease O showed no strict base specificity on the native and heat-denatured DNA, di-and tri-nucleotides in the digests were resistant to further hydrolysis by nuclease O. Native γDNA was hydrolyzed by nuclease O through the mechanism of single strand break, which was shown by neutral and alkaline sucrose density gradient centrifugations.  相似文献   

3.
Adenylyl (5′,2′)-adenosine 5′-phosphate ((2′-5′)pA-A) was detected in crude crystals of 5′-AMP prepared from Penicillium nuclease (nuclease P1) digest of a technical grade yeast RNA. While (3′–5′)A-A was split by nuclease P1, spleen phosphodiesterase, snake venom phosphodiesterase or alkali, (2′–5′)A-A was not split by a usual level of nuclease P1 or spleen phosphodiesterase. Nuclease P1 digests of 12 preparations of technical grade yeast RNA tested were confirmed to contain (2′–5′)pA-A. Its content was about 1 to 2% of the AMP component of each RNA preparation. As poly(A) was degraded completely by the Penicillium enzyme into 5′-AMP without formation of any appreciable amount of (2′–5′)pA-A, the technical grade RNA is supposed to contain 2–5′ phosphodiester linkages in addition to 3′–5′ major linkages.  相似文献   

4.
Nuclease Stn α from Streptomyces thermonitrificans hydrolyses DNA and RNA at the rate of approximately 10:l. The optimum pH and temperature for RNA hydrolysis were 7.0 and 45°C. The RNase activity of nuclease Stn α had neither an obligate requirement of metal ions nor was it activated in the presence of metal ions. The enzyme was inhibited by Zn2+, Mg2+, Co2+, and Ca2+; inorganic phosphate; pyrophosphate; NaCl; KCl; and metal chelators. It was stable at high concentrations of urea but susceptible to low concentrations of Sodium dodecyl sulfate and guanidine hydrochloride. The rates by which nuclease Stn α hydrolysed polyribonucleotides occurs in the order of poly A >> RNA >> poly U > poly G > poly C. The enzyme cleaved RNA to 3′ mononucleotides with preferential liberation of 3′AMP, indicating it to be an adenylic acid preferential endonuclease.  相似文献   

5.
A nuclease from N. crassa mycelia was found to attack both heat-denatured and native DNA in endonucleolytic manner. The products of exhaustive degradation of heat-denatured DNA were mainly di- to pentanucleotides bearing 5′-phosphoryl groups. 5′-Mononucleotides amounted to 4.4% of the total products and the base distribution was in the following order: dTMP > dCMP > dGMP > dAMP. Analysis of the residues at 5′- and 3′-termini of the oligonucleotides showed that thymidine was predominant at both termini, especially at 3′- termini. Also the analysis of terminal residues produced by limited digestion (27% and 55.5 % of the substrate were rendered acid soluble, respectively) gave the same results as above. Therefore, it was suggested that N. crassa nuclease has some preference for thymidine residue to hydrolyze the sequence of ?T ↓ pT? or ?T ↓ pX-predominantly. The activity toward synthetic polymers was in the following order; poly d(A-T) ? poly dA poly dT > poly d(G-C) > poly dGpoly dC. The correlation between GC-contents and the activity was also investigated.  相似文献   

6.
An extracellular nuclease was purified 165-fold with a specific activity of 41,250 U/mg poly(U) by chromatography with modified chitosan from the culture of marine fungus Penicillium melinii isolated from colonial ascidium collected near Shikotan Island, Sea of Okhotsk, at a depth of 123 m. The purified nuclease is a monomer with the molecular weight of 35 kDa. The enzyme exhibits maximum activity at pH 3.7 for DNA and RNA. The enzyme is stable until 75°C and in the pH range of 2.5–8.0. The enzyme endonucleolytically degrades ssDNA and RNA by 3′–5′ mode to produce 5′-oligonucleotides and 5′-mononucleotides; however, it preferentially degrades poly(U). The enzyme can digest dsDNA in the presence of pregnancy-specific beta-1-glycoprotein-1. The nuclease acts on closed circular double-stranded DNA to produce opened circular DNA and then the linear form DNA by single-strand scission. DNA sequence encoding the marine fungus P. melinii endonuclease revealed homology to S1-type nucleases. The tight correlation found between the extracellular endonuclease activity and the rate of H3-thymidine uptake by actively growing P. melinii cells suggests that this nuclease is required for fulfilling the nucleotide pool of precursors of DNA biosynthesis during the transformation of hyphae into the aerial mycelium and conidia in stressful environmental conditions.  相似文献   

7.
We have established that 5′-CG-3′ dinucleotide and 5′-CNG-3′ trinucleotide are found in published sequences of small interfering RNA and microRNA more often than they should be in random DNA sequences. This circumstance indicates the important biological role played by 5′-CG-3′ dinucleotides and 5′-CNG-3′ trinucleotides in small RNA sequences. We suggest that small RNAs containing these di- and trinucleotides participate in the creation of chromatin marks of epigenetic information through a highly specific search for repressible DNA sequences and through the initiation of the methylation de novo of 5′-CG-3′ and 5′-CNG-3′ sites in DNA fragments appearing to be bound complementary to small RNAs. Several genes can be inactivated simultaneously if they contain the motif recognized by small RNA. Allelic exclusion appears, in our opinion, as a result of initiation by small RNAs of DNA methylation de novo of all but one of the alleles that exist in the cell. The predecessor of this small RNA is transcribed from the antiparallel allele chain. Alleles whose antiparallel chains are less actively read by RNA polymerase, which, as we suggest, in the process of transcribing, releases DNA from small RNA bound to it, are inactivated. However, the quantity of small RNA transcribed from only one allele is insufficient to overcome the level above which the repression process of this allele is initiated de novo.  相似文献   

8.
Abstract

Oligonucleotide analogues comprised of 2′-deoxy-2′-fluoro-β-D-arabinose units joined via P3′-N5′ phosphoramidate linkages (2′F-ANA5′N) were prepared for the first time. Among the compounds prepared were a series of 2′OMe-RNA-[GAP]-2′OMe-RNA ‘chimeras’, whereby the “GAP” consisted of DNA, DNA5′N, 2′F-ANA or 2′F-ANA5′N segments. The chimeras with the 2′F-ANA and DNA gaps exhibited the highest affinity towards a complementary RNA target, followed by the 5′-amino derivatives, i.e., 2′F-ANA > DNA > 2′F-ANA5′N > DNA5′N. Importantly, hybrids between these chimeras and target RNA were all substrates of both human RNase HII and E.coli RNase HI. In terms of efficiency of the chimera in recruiting the bacterial enzyme, the following order was observed: gap DNA > 2′F-ANA > 2′F-ANA5′N > DNA5′N. The corresponding relative rates observed with the human enzyme were: gap DNA > 2′F-ANA5′N > 2′F-ANA > DNA5′N.  相似文献   

9.
A nuclease was purified about 1500-fold with a recovery of 20% from an aqueous extract of culture of a pigmentless mutant VI–10–14 of Penicillium citrinum on wheat bran. The purified preparation was homogeneous on the basis of the criteria of ultracentrifugation and disc gel electrophoresis. The preparation was essentially free of 5′-nucleotidase, non-specific phosphomonoesterase, non-specific phosphodiesterase and 3′-monoester forming nuclease. The preparation hydrolyzed phosphodiester bonds in RNA and DNA to yield 5′-mononucleotides, and also the phosphomonoester bond in 2′- and 3′-AMP to yield nucleoside and inorganic phosphate. The enzyme activities toward these substrates were not separated and relative ratio of their specific activities remained constant throughout the purification, suggesting that a single enzyme was responsible for these activities.  相似文献   

10.
Three kinds of nuclease preparations, each of which having both endonuclease activity that formed 5′-mononucleotides and 3′-nucleotidase activity, were separated and partially purified from Shii-take, Lentinus edodes. Both enzyme activities of each preparation showed a similar thermostability and electrophoretic mobility on Polyacrylamide gel, and a competitive relationship was observed between RNA and 3′-AMP in their enzyme reactions. From these results, it is concluded that both enzyme activities of these three preparations reside in a single protein, respectively. They resemble one another in substrate specificity, cleavage pattern of RNA and thermostability, but are distinguishable from one another by molecular weight, electrophoretic mobility and optimum pH for degradation of RNA.  相似文献   

11.
An extracellular nuclease from Bacillus firmus VKPACU-1 was multifunctional enzyme, this nuclease hydrolyzed poly U rapidly and more preferentially than the other homopolyribonucleotides. Hydrolysis of RNA this enzyme released mononucleotides in the order 5'UMP > 5'AMP > 5'GMP where as in hydrolysis of DNA the mononucleotides in the order of 5'dAMP > 5'dGMP > 5'dTMP and oligonucleotides. Uridylic linkages in RNA and adenylic linkages in DNA were preferentially cleaved by the nuclease. Nuclease produced oligonucleotides having only 3' hydroxyl and 5' phosphate termini. Present nuclease hydrolyzed RNA and DNA released oligonucleotides as major end products and mononucleotides, suggesting an endo mode of action.  相似文献   

12.
The activity of synthetic (2′(3′)-O-aminoacyl trinucleotides, C-C-A-Phe, C-C-U-Phe, C-U-A-Phe, U-C-A-Phe and C-A-A-Phe, in promoting the EF-Tu·70 S ribosome-catalyzed GTP hydrolysis was investigated. It was found that the activity decreases in the order C-C-A-Phe > C-U-A-Phe > U-C-A-Phe > C-A-A-Phe ⪢ C-C-U-Phe. Thus, the substitution in ‘natural’ C-C-A sequence with other nucleobases weakens binding of 2′(3′)-O-aminoacyl trinucleotides to EF-Tu, with the substitution at the 3′-position having the most profound effect. Since the 2′(3′)-O-aminoacyl oligonucleotides mimic the effect of the aa-tRNA 3′-terminus on EF-Tu·GTPase, it follows that EF-Tu probably directly recognizes structure of nucleobases in the aa-tRNA 3′-terminus, with the 3′-terminal adenine playing the most important role.  相似文献   

13.
Base-Specific Endo-Exonucleolytic Activity of Chlamydomonas Nuclease C1&2   总被引:1,自引:0,他引:1  
The reaction kinetics of nuclease C1&2 from Chlamydomonasreinhardtii were studied. It showed endo-exonucleolytic activitywith sugar non-specificity. The relative rates of RNA breakdownwere in order of poly(U) > poly(A) > yeast sRNA. In contrast,poly(G) and poly(C) released almost no acid-soluble materialsafter reacting with nuclease C1&2. The major products ofa 100% limit digest of synthetic RNA homopolymers were mononucleotideswith 3'-phosphate termini. Large oligonucleotides produced duringendo-exonucleolytic degradation also appeared carrying 3'-phosphatetermini. Nuclease C1&2 hydrolyzed single stranded DNA 20times faster than double stranded DNA by endo-exonucleolyticaction, releasing acid-soluble materials. High performance liquidchromatography of a 100% limit digest of salmon testes DNA demonstratedthat the major products were deoxymononucleotides with phosphateat 3'-position. Furthermore, the level of 3'-dCMP among themwas found to be extremely low. Poly(dC) and poly(me5dC) werehydrolyzed much more slowly than single stranded (or denatured)DNA, releasing acid-soluble materials. The present results suggestthat nuclease C1&2 is a base-specific nucleate 3'-oligonucleotidohydrolasedifferent from the restriction enzymes. (Received January 13, 1986; Accepted March 25, 1986)  相似文献   

14.
Two different methods were used to investigate the abundance of cytosine methylation at the outer (5′) position in 5′-CCG-3′ trinucleotides in angiosperm genomes. Mspl is unable to cut its target site if the outer cytosine is methylated (5′-mCCGG-3′). Using Mspl restriction analysis, it was shown that 5′-mCCG-3′ is present in all angiosperm genomes examined, and that the amount of cytosine methylation at this site varies between species. Subsequently, direct measurements were made of the amount of methylation at both cytosines in a subset of 5′-CCG-3′ trinucleotides in the Arabidopsis thaliana genome. Based upon these analyses, it was estimated that approximately 20–30% of 5′-CCG-3′ trinucleotides in A. thaliana are methylated at the outer cytosine. Approximately 20% of the 5′-CCG-3′ trinucleotides contain 5-methyl-cytosine at the inner cytosine position, which corresponds to a previous determination of 5′-mCG-3′ methylation in A. thaliana. The implications of 5′-mCCG-3′ methylation are discussed.  相似文献   

15.
Under conditions which favor the duplex structure of DNA, mung bean nuclease catalyzes a limited number of double-strand cleavages (probably less than 50) in the interior of native T7 DNA. However, under conditions which are not as favorable to a tight helical structure, the large duplex polymers previously produced are completely degraded from their termini with a continuous accumulation of mono-, di-, and trinucleotides. The terminally directed activity is an intrinsic property of the enzyme molecule because (1) it is inactivated and reactivated in parallel with the single-strand activity and (2) the two activities coelectrophorese on analytical gels. Kinetic measurements indicate that the apparent Km for the terminally directed hydrolysis of native DNA is relatively high. The pH optimum for both the hydrolysis of denatured DNA and the terminally directed hydrolysis of native DNA becomes more acidic with increasing salt concentration. The relative preference for single-stranded structures increases as the pH becomes more basic.  相似文献   

16.
The kinetic characteristics and the EDTA inhibition of microsomal 5′-nucleotidase from bovine brain cortex were studied and compared with the properties of the enzyme solubilized with Lubrol WX. The Km value after enzyme solubilization was not significantly different from that of the membrane-bound enzyme. Likewise, di- and trinucleotides performed a similar competitive inhibition of the two forms of the enzyme. In contrast, divalent cations inhibited the intact microsomal enzyme activity at the same concentrations in which they increased the soluble-enzyme activity. The solubilization of microsomal 5′-nucleotidase did not change the progressive and irreversible character of the EDTA inhibition, but the mechanism of the irreversible inhibition was different. The addition of divalent metal cations did not affect the irreversibility of either inhibition, even though the effect on the residual activities was different. The Arrhenius plot of the 5′-nucleotidase activity in intact microsomal fraction exhibited a well-defined break at 31 ± 0.1°C, whereas that of the solubilized enzyme was a straight line. It is concluded then that microsomal 5′-nucleotidase from bovine brain cortex does not require the membrane environment to express its activity, although the influence of this lipidic environment was evident in the differences observed in the enzyme activity modulation by EDTA, cations and temperature.  相似文献   

17.
A simple procedure, involving heat treatment, gel filtration on Sephadex G-100 followed by chromatography on anti-S1 nuclease antibodies bound to Sepharose, was developed for purification of S1 nuclease to homogeneity with an overall yield of 72%. S1 nuclease was rapidly inactivated, at pH 6.0 and 37°C, in presence of o-phthalaldehyde. Kinetic analysis of o-phthalaldehyde mediated inactivation showed that the reaction followed pseudo-first-order kinetics and the loss of enzyme activity was due to the formation of a single isoindole derivative per molecule of the enzyme. Absorbance and fluorescence spectrophotometric data also gave similar results. The isoindole derivative formation, as a result of o-phthalaldehyde treatment is known to occur through crosslinking of the thiol group of cysteine and the ε-amino group of lysine, situated in close proximity in the native enzyme. Since, modification of only available cysteine residue (Cys 25) did not affect the catalytic activity of the enzyme, the o-phthalaldehyde mediated inactivation of S1 nuclease is due to the modification of lysine. Substrates of S1 nuclease, namely ssDNA, RNA and 3′ AMP, could protect the enzyme against o-phthalaldehyde mediated inactivation. Moreover, the modified enzyme (having very little catalytic activity) showed a significant decrease in its ability to bind 5′ AMP, a competitive inhibitor of S1 nuclease, suggesting that the modification has occurred at the substrate binding site. The above results point towards the presence of cysteine 25 in close proximity to the substrate binding site.  相似文献   

18.
From the mycelia of Neurospora crassa (wild type No. 6068) multiple forms of a nuclease which had very close isoelectric points (pI = 9.6 (peak I), 9.4 (peak II)) were isolated by ampholine electrofocusing column chromatography (pH 8.5 ~ 10). The nuclease was about 300-fold purified from the crude extract. The two fractions of Peak I, II were indistinguishable in their enzymatic properties and were considered as manifestation of the same enzyme with minor physicochemical differences. The molecular weight was around 41,000 as estimated by the gel filtration method. The enzyme could hydrolyze both DNA and RNA in the order of heat-denatured DNA > native DNA DNA ≧ RNA. RNA competitively inhibited DNA degradation with this enzyme. The enzyme was therefore regarded as a nuclease. The pH optimum was around pH 6.5 toward native DNA, pH 6.7 toward heat-denatured DNA and pH 7.9 toward RNA. The temperature optimum was around 40°C toward these substrates and most of the activities were lost by heating at 55°C for 15 min. The enzyme required Mg2+ for action toward heat-denatured DNA and Mg2+, Mn2+ or Co2+ toward native DNA. In the presence of EDTA, the activities toward both types of DNA were lost and recovered by addition of the respective activating metallic ions. p-CMB inhibited this nuclease, but β-mercapto-ethanol and glutathione had no effect. Polyamìnes showed no activation of the nuclease for DNA degradation.  相似文献   

19.
Nuclease P1 cleaved substantially all phosphodiester bonds in rRNA, tRNA, poly(I), poly(U), poly(A), poly(C), poly(G), poly(I)·poly(C), native DNA and heat-denatured DNA to produce exclusively 5′-mononucleotides. Single-stranded polynucleotides were much more susceptible than double-stranded ones. Influence of pH and ionic strength on the hydrolysis rate significantly varied with the kind of polynucleotides. The enzyme also hydrolyzed 3′-phosphomonoester bonds in 3′-AMP, 3′-GMP, 3′-UMP, 3′-CMP, 3′-dAMP, 3′-dGMP, 3′-dCMP and 3′-dTMP. Ribonucleoside 3′-monophosphates were hydrolyzed 20 to 50 times faster than the corresponding 3′-deoxyribonucleotides. Base preference of the enzyme for 3′-ribonucleotides was in the order of G>A>C≧U, whereas that for 3′-deoxyribo-nucleotides was in the order of C≧T>A≧G. The 3′-phosphomonoester bonds in nucleoside 3′, 5′-diphosphates, coenzyme A and dinucleotides bearing 3′-phosphate were hydrolyzed at a rate similar to that for the corresponding 3′-mononucleotides. Adenosine 2′-monophosphate was highly resistant, being split at less than 1/3,000 the rate at which 3′-AMP was split.  相似文献   

20.
Javed Iqbal 《Planta》1977,134(1):1-3
The vegetative prothalli (1–3 weeks old) of Anemia were incubated for 24 h in [14C]adenine. The RNA was phenol extracted from whole cells and the poly (A) sequences were isolated by nuclease digestion followed by poly (U)-sepharose chromatography. About 2–3% of the total radioactivity was retained on the column. The base composition of the nuclease resistant RNA was: C, 1.4; G, 3.6; A, 93.3; and U, 1.7. It is concluded that Anemia RNA contains poly adenylate sequences.Part of a post-doctoral work. Fellowship awarded by Alexander von Humboldt-Stiftung, Federal Republic of Germany  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号