首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of the substrate and the coenzyme on the crystalline yeast phosphoglyceric acid mutase activity have been investigated. Lineweaver-Burk plots at different concentrations of the substrate (d-3-phosphoglyceric acid: 3×10?7 to 8×10?3m) and the coenzyme (d-2, 3-diphosphoglyceric acid: 8×10?7 to 10?5m) change in such a way to indicate the involvement of an enzyme-substrate-coenzyme ternary complex as an active intermediate in the enzymic reaction process. It is concluded that the reaction catalyzed by the yeast enzyme follows the sequential pathway and that a phosphorylated enzyme does not participate as an obligatory intermediate in the reaction mechanism, if it occurs. Kinetic studies indicate Km values of 6×10?4m for d-3-phosphoglyceric acid and 8×10?7m for d-2, 3-diphosphoglyceric acid. The substrate is a competitive inhibitor of the coenzyme with a Ksi (inhibition constant) of 3.2×10?3m. The coenzyme inhibition is not observed at concentration tested. A kinetic treatment to determine the mechanism of the enzyme reaction from the experimental data which are obtaind in the range of inhibitory substrate concentrations is presented.  相似文献   

2.
l-Glutamic acid was formed from d-, l-, and dl-PCA with cell-free extract of Pseudomonas alcaligenes ATCC-12815 grown in the medium containing dl-PCA as a sole source of carbon and nitrogen. The enzyme(s) involved in this conversion reaction was distributed in the soluble fraction within the cell and in 0.5 saturated fraction at the fractionation procedure with the saturation of ammonium sulfate. Optimum pH of this enzyme(s) lied at pH 8.5 and optimum temperature was 30°C. Cu (5 × 10?3 m) inhibited the reaction considerably while Ca or Fe accelerated it. PALP (1×10?3 m) also gave an enhanced activity to some extent. The enzyme preparation converted dextro-rotatory enan-thiomorph of PCA to its laevo-rotatory one which in turn was not converted to the opposite rotation direction by this enzyme. Furthermore, the preparation did not, if any, show d-glutamic acid racemase activity. Isotopic experiments with using dl-PCA-1-14C revealed that l-glutamic acid-1-14C was formed by the cleavage of –CO–NH– bond of pyrrolidone ring of PCA. It was concluded that dl-PCA when assimilated by the present bacterium is at first transformed to l-PCA by the optically isomerizing enzyme and subsequently is cleaved to l-glutamic acid probably by the PCA hydrolysing enzyme.  相似文献   

3.
d-Glucose-isomerizing enzyme has been extracted in high yield from d-xylose-grown cells of Bacillus coagulans, strain HN-68, by treating with lysozyme, and purified approximately 60-fold by manganese sulfate treatment, fractionation with ammonium sulfate and chromatography on DEAE-Sephadex column. The purified d-glucose-isomerizing enzyme was homogeneous in polyacrylamide gel electrophoresis and ultracentrifugation and was free from d-glucose-6-phosphate isomerase. Optimum pH and temperature for activity were found to be pH 7.0 and 75°C, respectively. The enzyme required specifically Co++ with suitable concentration for maximal activity being 10?3 m. In the presence of Co++, enzyme activity was inhibited strongly by Cu++, Zn++, Ni++, Mn++ or Ca++. At reaction equilibrium, the ratio of d-fructose to d-glucose was approximately 1.0. The enzyme catalyzed the isomerization of d-glucose, d-xylose and d-ribose. Apparent Michaelis constants for d-glucose and d-xylose were 9×10?2 m and 7.7×10?2 m, respectively.  相似文献   

4.
The properties of the tyrosinase from Pseudomonas melanogenum was investigated with the crude enzyme preparation. Optimum temperature and pH of the enzyme were 23°C and 6.8, respectively. l-Tyrosine, d-tyrosine, m-tyrosine, N-acetyl-l-tyrosine and l-DOPA were utilized as a substrate by the enzyme. The value for Km obtained were as follows: l-tyrosine 6.90 × 10?4 m, d-tyrosine 1.43 ×10?3 m and l-DOPA 9.90 × 10?4 m. The enzyme was inhibited by chelating agents of Cu2+ l-cysteine, l-homocysteine, thiourea and diethyl-dithiocarbamate and the inhibition was completely reversed by the addition of excess Cu2+ From these results it is concluded that the enzyme is a copper-containing oxidase.  相似文献   

5.
3-Methylthiopropylamine (MTPA) formation from l-methionine in Streptomyces sp. K37 was studied in detail. The reaction was confirmed to be catalyzed by the decarboxylase of l-methionine. The properties of the enzyme were studied in detail using acetone dried cells or cell-free extract. The enzyme was specific for l-methionine. Pyridoxal phosphate stimulated the reaction and protected the enzyme against heat inactivation. The optimum pH for the reaction was 6.0~8.0 and the optimum temperature was about 40°C. Carbonyl reagents (10?2~10?3 m) inhibited the reaction completely, and silver nitrate and mercuric chloride (10?3~10?4 m) markedly inhibited the reaction. Km value for the reaction was 1.21 × 10?5 m. l-Methionine assay using the decarboxylase was attempted and was found to be applicable to practical use.  相似文献   

6.
The molecular weight determined by the sedimentation equilibrium and SDS Polyacrylamide gel electrophoresis was 29,000 and 28,000, respectively. Isoelectric point of the enzyme was determined as pH 7.7. This enzyme contained large amounts of alanine, aspartic acid, glutamic acid and serine, and no cysteine residue was found. The enzyme was inhibited by SDS, KMnO4, EDTA and tetracycline. GTP and GDP were the most active as pyrophosphate acceptor to the enzyme. The apparent Km for ATP was 2.2×10?4 m and that for GTP was 2.1×10?4m in the reaction of ATP+GTP→AMP+pppGpp. On the other hand, in the reaction of 2ATP→AMP+pppApp, the apparent Km for donor and acceptor ATP was 1.7×10?3m. Effects of pH and metal ions on the enzymatic synthesis of pppGpp were also studied.  相似文献   

7.
l-Alanine adding enzymes from Bacillus subtilis and Bacillus cereus which catalyzed l-alanine incorporation into UDPMurNAc were partially purified and the properties of the enzymes were examined. The enzyme from B. subtilis was markedly stimulated by reducing agents including 2-mercaptoethanol, dithiothreitol, glutathione and cysteine. Mn2+ and Mg2+ activated l-alanine adding activity and their optimal concentrations were 2 to 5 mm and 10 mm, respectively. The optimum pH was 9.5 and the Km for l-alanine was 1.8×10?4m. l-Alanine adding reaction was strongly inhibited by p-chloromercuribenzoate and N-ethyl-maleimide. Among glycine, l- and d-amino acids and glycine derivatives, glycine was the most effective inhibitor of the l-alanine adding reaction. The enzyme from B. cereus was more resistant to glycine than that from B. subtilis. Glycine was incorporated into UDPMurNAc in place of l-alanine, and the Ki for glycine was 4.2×l0?3m with the enzyme from B. subtilis. From these data, the growth inhibition of bacteria by glycine is discussed.  相似文献   

8.
5-Ketogluconate reductase (5KGR) from the cell free extract of Gluconobacter liquefaciens (IFO 12388) was partially purified about 120-fold by a procedure employing ammonium sulfate fractionation, and DEAE-cellulose-, hydroxylapatite- and DEAE-Sephadex A-50-column chromatographies. NADP was specifically required for the oxidative reaction of gluconic acid. The optimum pH for the oxidation of gluconic acid (GA) to 5-ketogluconic acid (5KGA) by the enzyme was 10.0 and for the reduction of 5KGA was 7.5. The optimum temperature of the enzyme was 50°C for both reactions of oxidation and reduction. The enzyme was considerably unstable and lost all of its activity within 3 days. The enzyme activity was strongly inhibited with p-chloromercuribenzoate and mercury ion, but remarkably stimulated by EDTA (1 × 10?3m). Apparent Km values were 1.8 × 10?2m for GA, 0.9 × 10?3m for 5KGA, 1.6 × 10?5 m for NADP, and 1.1 × 10?5 m for NADPH2.  相似文献   

9.
A new enzyme, N-acetyl- d-hexosamine dehydrogenase (N-acety 1-α-d-hexosamine: NAD+ 1-oxidoreductase), was purified to homogeneity on polyacrylamide gel electrophoresis from a strain of Pseudomonas sp. about 900-fold with a yield of 12 %. The molecular weight of the enzyme was about 124,000 on gel filtration and 30,000 on SD S-polyacrylamide gel electrophoresis, respectively. Its isoelectric point was 4.7. The optimum pH was about 10.0. The enzyme was most stable between pH 8.0 and pH 10.5. The highest enzyme activity was observed with N-acetyl-d-glucosamine (Km = 5.3mm) and N-acetyl-d-galactosamine (Km = 0.8mm) as the sugar substrate. But it was not so active on N-acetyl-d-mannosamine. NAD+ was used specifically as the hydrogen acceptor. The anomeric requirement of the enzyme for N-acetyl-d-glucosamine was the α-pyranose form, and the reaction product was N-acetyl-d-glucosaminic acid. The enzyme activity was inhibited by Hg and SDS, but many divalent cations, metal-chelating reagents, and sulfhydryl reagents had no effect.  相似文献   

10.
Formyltetrahydrofolate synthetase (E. C. 6. 3. 4. 3) was found in fresh spinach leaves and purified about 60-fold by treatments of ammonium sulfate, protamine sulfate, dialysis, and DEAE-cellulose column chromatography. Some properties of the enzyme were investigated. Optimum pH was found to be 7.5, and optimum temperature was observed to be at 37°C. In the enzyme reaction, FAH4 and formate were required specifically as the substrates, and Mg++ and ATP were essential components. The Michaelis constants for dl-FAH4, formate, ATP and magnesium chloride were 1.7×10?3 m, 1.7×10?2 m, 4.1×10?4 m and 3.3×10?3 m, respectively. The primary product formed in the reaction catalyzed by the enzyme was suggested as N10-formyl-FAH4 spectrophotometrically. It was observed that the enzyme also catalyzed the reverse reaction. The possible role of the enzyme in plants was discussed.  相似文献   

11.
The enzyme uridine diphosphate N-acetylglucosamine pyrophosphorylase was purified about 330-fold from an extract of baker’s yeast by the treatment with protamine sulfate and column chromatographies on DEAE-cellulose, hydroxylapatite and Sephadex G–150. The purified enzyme was proved to be homogeneous by disc gel electrophoresis. The molecular weight was determined to be approximately 37,000 by gel filtration. The enzyme had an optimum reactivity in the pH range of 7.5-8.5 and was stable at 4°C in potassium phosphate buffer, pH 7.5, containing 0.1 mm dithiothreitol, but was unstable when stored at ?20°C. The addition of dithiothreitol also increased the thermal stability of enzyme. The enzyme was specific for UDP-N-acetylglucosamine as substrate, and none of the other sugar nucleotides could serve as nucleotide substrate. The estimated values of Km were 6.1 × 10?3 m for UDP-N-acetylglucosamine and 5.0 × 10?3 m for inorganic pyrophosphate. The enzyme required some divalent cations for activity. Magnesium ion was the most effective among the cations tested. The enzyme activity was highly stimulated by the addition of dithiothreitol or dithioerythritol.  相似文献   

12.
Phenylalanine ammonia-lyase, which catalyzes the conversion of l-phenylalanine to trans-cinnamic acid and ammonia, has been partially purified from the cells of Rhodotorula. Some of the properties of this phenylalanine ammoyia-lyase were investigated. The enzyme was stable in phosphate buffer of pH over the range of 6.0 to 7.0 On heating, the enzyme was stable up to 50°C, but above 60°C, it was destroyed. The enzyme activity was strongly inhibited by p-chloromercuribenzoate at 10?5 m and almost recovered by the addition of glutathione or mercaptoethanol at 10?3 m. The present enzyme preparation of Rhodotorula also catalyzed the deamination of l-tyrosine to trans-p-coumaric acid. trans-p-Coumaric acid was isolated from the reaction mixture and identified by its absorption spectra. The rates of deamination showed optima at pH 9.0 and 9.5 for l-phenylalanine and l-tyrosine, respectively.  相似文献   

13.
The crystalline d-mannitol dehyrogenase (d-mannitol:NAD oxidoreductase, EC 1.1.1.67) catalyzed the reversible reduction of d-fructose to d-mannitol. d-Sorbitol was oxidized only at the rate of 4% of the activity for d-mannitol. The enzyme was inactive for all of four pentitols and their corresponding 2-ketopentoses. The apparent optimal pH for the reduction of d-fructose or the oxidation of d-mannitol was 5.35 or 8.6, respectively. The Michaelis constants were 0.035 m for d-fructose and 0.020 m for d-mannitol. The enzyme was also found to be specific for NAD. The Michaelis constans were 1 × 10?5 m for NADH2 and 2.7 × 10?4 m for NAD.  相似文献   

14.
Detailed enzymatic properties of the ureido ring synthetase purified from Pseudomonas graveolens were investigated. Nucleotide specificity studies indicated that CTP, UTP, GTP, and ITP were each tenth to one-fifth as active as ATP. The effect of substrate concentration was examined. The Km values for 7,8-diaminopelargonic acid, biotin diaminocarboxylic acid, NaHCO3, ATP, and MgCl2 were 1 × 10?4 M, 4 × 10?5 M, 1 × 10?2 m, 5 × 10?5 M, and 3 × 10?3 M, respectively. It was elucidated that only ADP was produced from ATP in both the reaction of desthiobiotin synthesis from 7,8-diaminopelargonic acid and biotin synthesis from biotin diaminocarboxylic acid. The reaction was remarkably inhibited by Ni2+, Cd2+, Cu2+, Ag+, and As3+, while Mn2+ remarkably enhanced the enzyme reaction. The reaction was remarkably inhibited by metal-chelating reagents. It was elucidated that ADP had a competitively inhibiting effect on this enzyme reaction. 7,8-DiaminopeIargonic acid, which is the substrate for the desthiobiotin synthesis, competitively inhibited the biotin synthesis from biotin diaminocarboxylic acid. The stoichiometry of the desthiobiotin synthesis indicated that the formation ratio of desthiobiotin to ADP was 1 to 1.  相似文献   

15.
N-Benzoyl-l-alanine amidohydrolase was purified from a cell-free extract of Corynebacterium equi H-7 which was grown in a medium containing hippuric acid as the sole carbon source. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis and SDS-polyacrylamide gel electrophoresis. The molecular weight was 230,000 and the enzyme consisted of six subunits, identical in molecular weight (approximately 40,000). The isoelectric point of the enzyme was pH 4.6. The optimum pH of the enzyme reaction was 8.0 and the enzyme was stable from pH 7.0 to 8.0. The enzyme hydrolyzed N-benzoyl-l-alanine, N-benzoylglycine, and N-benzoyl-l-aminobutyric acid. The Km values for these substrates were 4.3 mm, 6.7 mm, and 4.3 mm, respectively. The enzyme was activated by Co2+.  相似文献   

16.
UDP-glucose pyrophosphorylase of Jerusalem artichoke tubers was purified 90-fold over the crude extract. The purified enzyme preparation absolutely required magnesium ions for activity. Cobalt ions were 60% as effective as magnesium ions; other divalent cations including manganese showed little or no effect. This enzyme had a pH optimum of 8.5 and a temperature optimum of 40°C. ATP and UDP inhibited the activity of this enzyme in both forward and backward directions. Km values for UDP-glucose, inorganic pyrophosphate, glucose-1-phosphate and UTP were determined to be 4.45 × 10?4 M, 2.33 × 10?4 M, 9.38 × 10?4 M and 2.98 × 10?4 M, respectively. These results are discussed in comparison with those of UDP-glucose pyrophosphorylases isolated from other plants.  相似文献   

17.
2-Ketogluconate reductase (2KGR) from the cell free extract of Gluconobacter liquefaciens (IFO 12388) was purified about 1000-fold by a procedure involving ammonium sulfate fractionation and column chromatographies using DEAE-cellulose, hydroxylapatite, and Sephadex gel The purified enzyme gave a single band on polyacrymamide gel electrophoresis. NADP was specifically required for the oxidation reaction of gluconic acid. Using gel filtration a molecular weight of about 110,000 was estimated for the enzyme. The pH optimum for the oxidation of gluconic acid (GA) to 2-ketogluconic acid (2KGA) by the enzyme was 10.5 and for the reduction of 2KGA was 6.5. The optimum temperature of the enzyme was 50 C for both reactions of oxidation and reduction. The enzyme was stable at pH between 5.0 and 11.0 and at temperature under 50°C, The enzyme activity was strongly inhibited with p-chloromercuribenzoate and mercury ions, but remarkably stimulated by manganese ions (1×10?3 m). Km value of the enzyme for GA was 1.3×10?2 m and for 2KGA was 6.6×10?3 m. Km values for NADP and NADPH2 were 1.25×10?5 and 1.52×10?5 m respectively.  相似文献   

18.
Pantothenate kinase (ATP: pantothenate 4′-phosphotransferase, EC 2.7.1.33) was purified about 200-fold from the cell extract of Brevibacterium ammoniagenes IFO 12071 by ammonium sulfate fractionation, DEAE-cellulose chromatography, and Sephadex G-150 gel filtration. The purified enzyme gave a single band on polyacrylamide gel electrophoresis. The molecular weight was calculated approximately 45,000. The enzyme catalyzed the formation of pantothenic acid 4′-phosphate and ADP from pantothenate and ATP in the presence of Mg2+ ATP could be substituted for, partly, by ITP, GTP, and UTP. The enzyme phosphorylated not only pantothenate, but also pantothenoylcysteine, pantetheine, and pantothenyl alcohol. Apparent Km values were 6.7×10?5 m for pantothenate, 3.5×10?5 m for ATP, and 10?3 m for Mg2+. The reaction was inhibited by the intermediates of CoA biosynthesis, of which CoA itself was a most effective inhibitor. Other properties of the enzyme were also investigated.  相似文献   

19.
l-Fucose (l-galactose) dehydrogenase was isolated to homogeneity from a cell-free extract of Pseudomonas sp. No 1143 and purified about 380-fold with a yield of 23 %. The purification procedures were: treatment with polyethyleneimine, ammonium sulfate fractionation, chromatographies on phenyl-Sepharose and DEAE-Sephadex, preparative polyacrylamide gel electrophoresis, and gel filtration on Sephadex G-100. The enzyme had a molecular weight of about 34,000. The optimum pH was at 9 — 10.5 and the isoelectric point was at pH 5.1. l-Fucose and l-galactose were effective substrates for the enzyme reaction, but d-arabinose was not so much. The anomeric requirement of the enzyme to l-fucose was the β-pyranose form, and the reaction product from l-fucose was l-fucono- lactone. The hydrogen acceptor for the enzyme reaction wasNADP+, and NAD + could be substituted for it to a very small degree. Km values were 1.9mm, 19mm, 0.016mm, and 5.6mm for l-fucose, l- galactose, NADP+, and NAD+, respectively. The enzyme activity was strongly inhibited by Hg2 +, Cd2 +, and PCMB, but metal-chelating reagents had almost no effect. In a preliminary experiment, it was indicated that the enzyme may be usable for the measurement of l-fucose.  相似文献   

20.
An intermediate radical, ?H2OH, was produced in aqueous methanol solution containing nitrous oxide by γ-irradiation. Yields of ethylene glycol and formaldehyde, the major and the minor product from ?H2OH, respectively, changed on the addition of some solutes. Cysteine lowered the both product yields to zero even at a low concentration of 5 × 10?5m. Oxygen of low concentrations (2.5~7.5 × 10?5 m) changed effectively the major product from ethylene glycol to formaldehyde. k (CySH+?H2OH)/k(O2+?H2OH) was calculated as 0.5.

Ascorbic acid (5 × 10?5 m) lowered ethylene glycol yield to 48%, cystine (10?3m) to 15%, methionine (10?3m) to 31%, histidine (10?3m) to 42%, tryptophan (10?3m) 46%, tyrosine (10?3m) to 77%, phenylalanine (10?3m) to 73%, hypoxanthine (10?3m) to 37%, adenine (10?3m) to 52%, uracil (10?3m) to 20%, thymine (10?3m) to 10%, cytosine (10?3 m) to 49%, rutin (10?3m) to 23%, pyrogallol (10?3m) to 41%, and gallic acid (10?3m) to 78% of the control. These results suggest that the reactions of the secondary radicals such as ?H2OH perform an important role in material change of foods irradiated with γ rays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号