首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用1~#、7~#PPY三种培养基,从保山摆洛塘温泉(86℃,pH7.0)分离到生长温度范围为35—75℃的极端嗜热细菌4株,即“YN8617”、“YN8618”、“YN86290”,YN86291”。经鉴定,“YN3617”和“YN86291”为Bacillus stearother mophilus,“YN86290”为Becillus caldolyticus;“YN3618”暂定为“Extremely thermophilic strains of B.Coagulans”。没有分离到水生栖热菌属(Thermus)的细菌。  相似文献   

2.
Eight strains of thermophilic bacteria were examined for the presence of covalently closed circular deoxyribonucleic acid molecules by caesium chloride-ethidium bromide density gradient centrifugation. Four of the eight strains tested, Thermus flavus BS1, AT61, AT62 and Thermus thermophilus HB8 carried covalently closed circular DNA molecules. Thermus flavus BS1 haboured two species of plasmids with molecular weights of 6.1 X 10(6) and 17.0 X 10(6) as determined by electron microscopy. Thermus thermophilus HB8, T. flavus AT61 and T. flavus AT62 carried plasmids with molecular weights of 6.2 X 10(6), 6.6 X 10(6) and 6.6 X 10(6), respectively. Plasmids from T. flavus AT61 and AT62 were indistinguishable in their electrophoretic patterns in agarose or acrylamide gel after digestion with various restriction endonucleases. This is the first evidence for the presence of plasmids in extremely thermophilic bacteria, though their functions are unknown.  相似文献   

3.
High numbers (10(7) to 10(10) cells per g [dry weight]) of heterotrophic, gram-negative, rod-shaped, non-sporeforming, aerobic, thermophilic bacteria related to the genus Thermus were isolated from thermogenic composts at temperatures between 65 and 82 degrees C. These bacteria were present in different types of wastes (garden and kitchen wastes and sewage sludge) and in all the industrial composting systems studied (open-air windows, boxes with automated turning and aeration, and closed bioreactors with aeration). Isolates grew fast on a rich complex medium at temperatures between 40 and 80 degrees C, with optimum growth between 65 and 75 degrees C. Nutritional characteristics, total protein profiles, DNA-DNA hybridization (except strain JT4), and restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs (16S rDNAs) showed that Thermus strains isolated from hot composts were closely related to Thermus thermophilus HB8. These newly isolated T. thermophilus strains have probably adapted to the conditions in the hot-compost ecosystem. Heterotrophic, ovalspore-forming, thermophilic bacilli were also isolated from hot composts, but none of the isolates was able to grow at temperatures above 70 degrees C. This is the first report of hot composts as habitats for a high number of thermophilic bacteria related to the genus Thermus. Our study suggests that Thermus strains play an important role in organic-matter degradation during the thermogenic phase (65 to 80 degrees C) of the composting process.  相似文献   

4.
Thermophilic bacteria are actively prevalent in hot water springs. Their potential to grow and sustain at higher temperatures makes them exceptional compare to other microorganism. The present study was initiated to isolate, identify and determine the feasibility of extraction of copper using thermophilic heterotrophic bacterial strain. Bacillus stearothermophilus is a thermophilic heterotrophic bacterium isolated from hot water spring, Atri, Orissa, India. This bacterium was adapted to low-grade chalcopyrite ore and its efficiency to solubilize copper from Malanjkhand low-grade ore was determined. The low-grade copper ore contains 0.27% Cu, in which the major copper-bearing mineral is chalcopyrite associated with other minerals present as minor phase. Variation in parameters such as pulp-density and temperatures were studied. After 30 days of incubation, it was found that Bacillus stearothermophilus solubilize copper up to 81.25% at pH 6.8 at 60°C.  相似文献   

5.
临沧地区温泉中的嗜热性芽孢杆菌及其特征   总被引:4,自引:0,他引:4  
本文报道临沧地区温泉中的嗜热性芽孢杆菌及其特征。从该地区温泉中分离出Bacillusstearothermophilus和Bacillus thermosubtilis sp.nov.两个种。这些菌株都具有在自养型培养基上生长的能力。从这些温泉中没有分离出Thermus。  相似文献   

6.
Several extreme thermophilic Gram negative bacteria found in a thermally polluted river in Belgium have been compared with Thermus strains isolated from widely distant geographical areas. This analysis has become possible after the design of a new culture medium (162).All strains examined (including the isolate successively denominated Flavobacterium thermophilum and Thermus thermophilus) were found to be morphologically identical with strain YT-1 of Thermus aquaticus. The cells are immotile, rod-like, strictly aerobic, catalase and oxidase positive. They produce amylase, hydrolyze gelatin and are confirmed to be highly sensitive towards penicillin.The nutritional pattern of all strains has been analysed extensively, by testing a broad spectrum of possible substrates.The strains display a uniform response to the microbiological tests applied and most probably belong to the same species: Thermus aquaticus.Abbreviations GC guanosine cytosine - ATCC American Type Culture Collection - DSM Deutsche Sammlung von Mikroorganismen  相似文献   

7.
Two methanotrophic bacteria with optimum growth temperatures above 40° C were isolated. Thermotolerant strain LK6 was isolated from agricultural soil, and the moderately thermophilic strain OR2 was isolated from the effluent of an underground hot spring. When compared to the described thermophilic methanotrophs Methylococcus capsulatus and Methylococcus thermophilus, these strains are phenotypically similar to Methylococcus thermophilus. However, their 16S rRNA gene sequences are markedly different from the sequence of Methylococcus thermophilus (∼ 8% divergence) and, together with Methylomonas gracilis, they form a distinct, new genus within the γ-subgroup of the Proteobacteria related to extant Type I methanotrophs. Further phenotypic characterisation showed that the isolates possess particulate methane monooxygenase (pMMO) but do not contain soluble methane monooxygenase. The nucleotide sequence of a gene encoding pMMO (pmoA) was determined for both isolates and for Methylomonas gracilis. PmoA sequence comparisons confirmed the monophyletic nature of this newly recognised group of thermophilic methanotrophs and their relationship to previously described Type I methanotrophs. We propose that strains OR2 and LK6, together with the misclassified thermophilic strains Methylomonas gracilis VKM-14LT and Methylococcus thermophilus IMV-B3122, comprise a new genus of thermophilic methanotrophs, Methylocaldum gen. nov., containing three new species: Methylocaldum szegediense, Methylocaldum tepidum and Methylocaldum gracile. Received: 2 April 1997 / Accepted: 23 July 1997  相似文献   

8.
The present investigation reports the isolation, molecular identification and structure elucidation of antibacterial produced by two thermophilic spore-forming bacteria from hot spring (98?°C) of Guelma (Algeria). Morphological, biochemical and physiological characteristics were carried out. The molecular identification by 16S rRNA and 16-23S rRNA ITS-PCR sequencing identified the thermophilic strains as Bacillus licheniformis with 99% of similarity with GenBank accession numbers KX100031 and KX100032. Phenotypic characterization has mentioned several differences between thermophilic isolates and Bacillus licheniformis ATCC 14580. The ability of the thermophilic spore- forming bacteria to produce antibacterial compounds against two multidrug resistance bacteria Pseudomonas aeruginosa (NR_0754828.1) and Staphylococcus aureus (NR_075000.1) in pure and mixed culture was investigated by Radial Diffusion Assay at 55?°C. Structural elucidation of actives compounds was carried out using gas chromatography–mass spectrometry analyses. Antibacterial potency of the thermophilic isolates might be due to the association between two phenolic compounds: 2,4-Di-tert-butyl-phenol as principal active compound and p-tert-butylcalix[4]arene as prodrugs comparing between gas chromatography–mass spectrometry analysis of pure and mixed extract. To the best of our knowledge, this is the first report showing production of p-tert-butylcalix[4]arene and 2,4-Di-tert-butyl-phenol as extremolytes compounds from thermophilic Bacillus licheniformis at 55?°C.  相似文献   

9.
Microbial communities thriving at two hot springs, Hammam Pharaon (Pharaoh's Bath) and Oyoun Mossa (Moses springs), in Egypt was studied by cultural and molecular methods. Thirteen morphologically distinct strains of facultative anaerobic thermophilic bacterial isolates have been characterized and identified using phenotypic and genotypic characters including RAPD-PCR, ERIC-PCR typing, plasmid analysis and 16S rRNA sequencing. All isolates produced plasmid DNA with various sizes ranging from 0.7 kb to a larger plasmid 7.2 kb. The bacterial strains could tolerate a temperature range between 45 to 85°C and a pH between 4–11. Also, sulphate-reducing bacteria (SRB) in the thermal springs were investigated with combined biochemical and molecular approaches. A sulphate-reducing bacteria medium containing lactate was used for enrichment and isolation, which yielded Gram negative, rod shaped, anaerobic, non-spore-forming and motile bacteria capable of reducing sulphate to sulphide. These grew at temperatures ranging from 30 to 50°C and could use pyruvate, lactate and ethanol as electron donors. The dissimilatory sulphite reductase (DSR) gene sequences of eleven representative isolates revealed that the strains belonged to the sulphur reducing bacterial species Desulfovibrio vulgaris. 16S rRNA gene partial sequence results indicated the presence of novel or existing species of Bacillus (one species), Anoxybacillus (four species) and Geobacillus (eight species). In this study phenotypic and genotypic diversity were applied for the first time to differentiate thermophilic bacteria of such geothermal sites in Sinai, Egypt.  相似文献   

10.
Abstract

Thermophilic bacteria have attracted great attention due to their ability to produce thermostable enzymes. The aim of this study was the isolation and characterization of thermophilic bacteria from Gavmesh Goli hot spring in Sareyn, North West of Iran. Of 10 water samples collected, 36 thermophilic bacteria were obtained. The thermophilic bacteria were tested for their ability to produce hydrolase enzymes. All the isolates were potentially protease producers. Lipase, DNase, and amylase activities were confirmed in 34 (94.4%), 8 (22.2%), and 3 (8.3%) isolates, respectively. Five isolates with higher levels of enzyme activity were selected for further studies. Morphological, biochemical, and molecular analysis by 16S rRNA gene sequencing revealed that four isolates (DH15, DH16, DH20, and DH29) could be identified as Thermomonas hydrothermalis and one (PA10) Bacillus altitudinis. The protease produced by these isolates was optimally active at 50–55?°C, pH 8–8.5, and 0–0.5?M NaCl. In this first time study, we isolated T. hydrothermalis and B. altitudinis from Iranian hot springs and demonstrated the characteristics of T. hydrothermalis protease. Accordingly, due to the valuable potential of these bacteria such as the production of protease with high temperature and pH stability, these isolates can be introduced as promising candidates for industrial applications.  相似文献   

11.
A variety of autotrophic, sulfur- and hydrogen-oxidizing thermophilic bacteria were isolated from thermogenic composts at temperatures of 60–80° C. All were penicillin G sensitive, which proves that they belong to the Bacteria domain. The obligately autotrophic, non-spore-forming strains were gram-negative rods growing at 60–80°C, with an optimum at 70–75°C, but only under microaerophilic conditions (5 kPa oxygen). These strains had similar DNA G+C content (34.7–37.6 mol%) and showed a high DNA:DNA homology (70–87%) with Hydrogenobacter strains isolated from geothermal areas. The facultatively autotrophic strains isolated from hot composts were gram-variable rods that formed spherical and terminal endospores, except for one strain. The strains grew at 55–75° C, with an optimum at 65–70° C. These bacteria were able to grow heterotrophically, or autotrophically with hydrogen; however, they oxidized thiosulfate under mixotrophic growth conditions (e.g. pyruvate or hydrogen plus thiosulfate). These strains had similar DNA G+C content (60–64 mol%) to and high DNA:DNA homology (> 75%) with the reference strain of Bacillus schlegelii. This is the first report of thermogenic composts as habitats of thermophilic sulfur- and hydrogen-oxidizing bacteria, which to date have been known only from geothermal manifestations. This contrasts with the generally held belief that thermogenic composts at temperatures above 60° C support only a very low diversity of obligatory heterotrophic thermophiles related to Bacillus stearothermophilus. Received: 20 July 1995 / Accepted: 25 September 1995  相似文献   

12.
Aims: This study aimed at isolating thermophilic bacteria that utilize cheap carbon substrates for the economically feasible production of poly(3‐hydroxybutyrate), poly(3HB), at elevated temperatures. Methods and Results: Thermophilic bacteria were enriched from an aerobic organic waste treatment plant in Germany, and from hot springs in Egypt. Using the viable colony staining method for hydrophobic cellular inclusions with Nile red in mineral salts medium (MSM) containing different carbon sources, six Gram‐negative bacteria were isolated. Under the cultivation conditions used in this study, strains MW9, MW11, MW12, MW13 and MW14 formed stable star‐shaped cell‐aggregates (SSCAs) during growth; only strain MW10 consisted of free‐living rod‐shaped cells. The phylogenetic relationships of the strains as derived from 16S rRNA gene sequence comparisons revealed them as members of the Alphaproteobacteria. The 16S rRNA gene sequences of the isolates were very similar (>99% similarity) and exhibited similarities ranging from 93 to 99% with the most closely related species that were Chelatococcus daeguensis, Chelatococcus sambhunathii , Chelatococcus asaccharovorans, Bosea minatitlanensis, Bosea thiooxidans and Methylobacterium lusitanum. Strains MW9, MW10, MW13 and MW14 grew optimally in MSM with glucose, whereas strains MW11 and MW12 preferred glycerol as sole carbon source for growth and poly(3HB) accumulation. The highest cell density and highest poly(3HB) content attained were 4·8 g l?l (cell dry weight) and 73% (w/w), respectively. Cells of all strains grew at temperatures between 37 and 55°C with the optimum growth at 50°C. Conclusions: New PHA‐accumulating thermophilic bacterial strains were isolated and characterized to produce poly(3HB) from glucose or glycerol in MSM at 50°C. SSCAs formation was reported during growth. Significance and Impact of the Study: To the best of our knowledge, this is the first report on the formation of SSCAs by PHA‐accumulating bacteria and also by thermophilic bacteria. PHA‐producing thermophiles can significantly reduce the costs of fermentative PHA production.  相似文献   

13.
Abstract Anaerobic thermophilic xylan-degrading bacteria present in unenriched and enriched 70°C samples from two Icelandic hot springs were enumerated at 68, 78, 90 and 99°C by the use of the Most-Probable-Number method. Xylan was used as substrate. From the samples taken at 70°C and incubated at the temperatures previously described no growth was observed above 78°C. A total of ten strains were isolated and characterized from the positive MPN enrichment cultures from the MPN experiments. A higher number of different strains could be isolated in the enriched samples compared with the unenriched, control samples from the same hot spring. Introduction of xylan, i.e., in situ enrichment, into one of the hot springs changed the bacterial population, as none of the bacteria isolated from the unenriched samples were isolated from the enriched samples. All the isolated bacteria were asporogenous, non-motile and gram-negative rods. One long thin rod had morphological similarities to members of the genus Dictyoglomus and was found in both hot spring samples.  相似文献   

14.
Several thermophilic strains similar to Thermus sp. were isolated from a hot spring in Nha Trang (Vietnam), and a domestic hot water reservoir, respectively. They grow aerobically on a complex medium at a temperature of 55 to 70°C and a pH value of 7 to 8. The cells are gram-negative, non-motile and non-sporulating. They possess yellow or red pigments. The isolated strains are similar to Thermus sp. in regard to the composition of the intracellular fatty-acid fraction as well as the absorption spectra of the extracted cellular pigments.  相似文献   

15.
Thermus sp. strain CCB_US3_UF1, a thermophilic bacterium, has been isolated from a hot spring in Malaysia. Here, we present the complete genome sequence of Thermus sp. CCB_US3_UF1.  相似文献   

16.
Aspergillus flavus isolated from naturally infected leaf-eating caterpillar (Opisina arenosella W.), lace bug (Stephanitis typica D.) and plant hopper (Proutista moesta Westwood), insect pests of the coconut palm, were tested for aflatoxin (AT) production by employing various media formulations. These A. flavus isolates were earlier found to be entomopathogenic in laboratory bioassays. A laboratory contaminant and four standard aflatoxigenic A. flavus isolates were also included in this study as reference strains. All A. flavus isolates were tested on seven AT detection media: coconut extract agar, coconut extract-sodium desoxycholate agar, coconut extract-ascorbic acid agar, coconut extract-Czapek Dox agar, coconut extract-milk powder agar, 10% commercial coconut milk powder agar (CCMPA) and 20% CCMPA. Only two isolates of A. flavus, originally isolated from O. arenosella and P. moesta, produced ATs. AT production was detected within 48 h of incubation and was detected continually up to 1 month. These AT-producing A. flavus isolates also produced bright yellow pigmentation in the medium. Of all the seven media used for AT detection, CCMPA (10%) was found to be the best one, followed by 20% CCMPA, for direct and rapid AT detection. AT production was not necessary for pathogenicity in the insects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Recent studies have indicated that post-translational flavinylation of succinate dehydrogenase subunit A (SdhA) in eukaryotes and bacteria require the chaperone-like proteins Sdh5 and SdhE, respectively. How does covalent flavinylation occur in prokaryotes, which lack SdhE homologs? In this study, I showed that covalent flavinylation in two hyperthermophilic bacteria/archaea lacking SdhE, Thermus thermophilus and Sulfolobus tokodaii, requires heat and dicarboxylic acid. These thermophilic bacteria/archaea inhabit hot environments and are said to be genetically far removed from mesophilic bacteria which possess SdhE. Since mesophilic bacteria have been effective at covalent bonding in temperate environments, they may have caused the evolution of SdhE.  相似文献   

18.
The present study was conducted to identify and characterize the thermophilic bacteria isolated from various hot springs in Turkey by using phenotypic and genotypic methods including fatty acid methyl ester and rep-PCR profilings, and 16S rRNA sequencing. The data of fatty acid analysis showed the presence of 17 different fatty acids in 15 bacterial strains examined in this study. Six fatty acids, 15:0 iso, 15:0 anteiso, 16:0, 16:0 iso, 17:0 iso, and 17:0 anteiso, were present in all strains. The bacterial strains were classified into three phenotypic groups based on fatty acid profiles which were confirmed by genotypic methods such as 16S rRNA sequence analysis and rep-PCR genomic fingerprint profiles. After evaluating several primer sets targeting the repetitive DNA elements of REP, ERIC, BOX and (GTG)5, the (GTG)5 and BOXA1R primers were found to be the most reliable technique for identification and taxonomic characterization of thermophilic bacteria in the genera of Geobacillus, Anoxybacillus and Bacillus spp. Therefore, rep-PCR fingerprinting using the (GTG)5 and BOXA1R primers can be considered as a promising genotypic tool for the identification and characterization of thermophilic bacteria from species to strain level.  相似文献   

19.
NADP-dependent chloroplastic malate dehydrogenase (E.C.1.1.1.82) is regulated by thiol disulfide-interchange with thioredoxin. It displays two regulatory disulfides per subunit, located in specific sequence extensions respectively at the N- and C-terminal ends of each subunit. In the present study, attempts were made to transfer the regulatory properties of sorghum NADP-malate dehydrogenase to a constitutively active NAD-dependent malate dehydogenase (E.C.1.1.1.37) from the thermophilic bacteria Thermus flavus, by grafting the regulatory extensions of the former to the latter. The results demonstrate that a successful transfer of redox regulation properties requires the grafting of both full-length extensions, but also the introduction of specific hydrophobic residues in the core part of the protein. These residues are very likely involved in the interaction between monomers, and structural changes at the active site.  相似文献   

20.
The gene encoding the ribosomal protein from Thermus thermophilus, TL5, which binds to the 5S rRNA, has been cloned and sequenced. The codon usage shows a clear preference for G/C rich codons that is characteristic for many genes in thermophilic bacteria. The deduced amino acid sequence consists of 206 residues. The sequence of TL5 shows a strong similarity to a general shock protein from Bacillus subtilis, named CTC. The protein CTC is homologous in its N-terminal part to the 5S rRNA binding protein, L25, from E coli. An alignment of the TL5, CTC and L25 sequences displays a number of residues that are totally conserved. No clear sequence similarity was found between TL5 and other proteins which are known to bind to 5S rRNA. The evolutionary relationship of a heat shock protein in mesophiles and a ribosomal protein in thermophilic bacteria as well as a possible role of TL5 in the ribosome are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号