首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reliable and reproducible assay was developed for measuring mitochondrial α-keto acid decarboxylase activity using ferricyanide as the electron acceptor. This method permitted the functional isolation and investigation of the decarboxylase step of the branched-chain α-keto acid dehydrogenases in rat liver mitochondria. Pyruvate and α-ketoglutarate decarboxylases are known to be separate and distinct enzymes from the branched-chain α-keto acid decarboxylases and were studied as controls. The relative specific activities of rat liver mitochondrial decarboxylases as measured by the ferricyanide assay showed that pyruvate and α-ketoglutarate were decarboxylated twice as rapidly as α-ketoisovalerate and four to ten times as fast as α-keto-β-methylvalerate and α-ketoisocaproate. The three branched-chain α-keto acids individually inhibit pyruvate and α-ketoglutarate decarboxylases. Inactivation of mitochondrial branched-chain α-keto acid decarboxylase activity by freezing and thawing and by prolonged storage resulted in a proportional decrease in decarboxylase activity toward each of the three branched-chain α-keto acids. However, hypophysectomy was found to increase decarboxylase activity with α-keto-β-methylvalerate to four times normal and with α-ketoisovalerate to three times normal, but the activity with α-ketoisocaproate was not changed. Hypophysectomy did not alter mitochondrial decarboxylase activity with pyruvate, α-ketoglutarate, or α-ketovalerate. The finding that hypophysectomy differentially alters the mitochondrial decarboxylase activity with the three branched-chain α-keto acids suggests either that there is more than one substrate-specific enzyme with branched-chain α-keto acid decarboxylase activity or that there is a modification of one enzyme such that the catalytic activity is selectively altered toward the three substrates.  相似文献   

2.
Y.C. Chia  G.W. Smith  G.J. Lees 《Life sciences》1984,34(25):2443-2452
Homogenates of rat liver transaminate phenylpyruvate (PP), as well as α-ketoglutarate (α-KG), in the presence of L-tyrosine, 3,4-dihydroxyphenylalanine (L-DOPA) or L-tryptophan. Aminotransferase activity with phenylpyruvate and DOPA, but not with tyrosine, was inhibited by excess phenylpyruvate. Tyrosine and DOPA aminotransferase activities with phenylpyruvate were more heat stable than the corresponding activities with α-ketoglutarate. Aminotransferase activities with phenylpyruvate were not significantly induced following intraperitoneal injections of cortisol, glucagon or serotonin, compared with a 3 to 7-fold increase in the aminotransferase activities with α-ketoglutarate. Tyrosine:phenylpyruvate aminotransferase activity rose 40% at night, compared with a 300% increase in tyrosine:α-ketoglutarate aminotransferase activity. The results suggest that aminotransferases catalysing transfers between aromatic keto acids and aromatic amino acids are separate enzymes from those utilizing α-ketoglutarate as the acceptor keto acid.  相似文献   

3.
Secondary structure of α-chymotrypsin in water/ethanol was investigated by circular dichroic (CD) spectroscopy. The changes in catalytic activity were discussed in terms of structural changes of the enzyme. α-Chymotrypsin formed β-sheet structure in water/ethanol (50/50 by volume), but it was substantially less active as compared to that in water. At water/ethanol 10/90, α-chymotrypsin took on a native-like structure, which gradually changed to β conformation with concomitant loss of activity. Change of solvent composition from water/ethanol 50/50 to 90/10 or 10/90 by dilution with water or ethanol, respectively, led to partial recovery of native or native-like structure and activity. In water/methanol, α-chymotrypsin tended to form stable β-sheet structure at water/methanol ratios lower than 50/50, but the catalytic activity decreased with time. Change to α-helix structure with substantial loss in catalytic activity was observed when α-chymotrypsin was dissolved in water/2,2,2-trifluoroethanol with water contents lower than 50%. In water/2,2,2-trifluoroethanol 90/10, α-chymotrypsin initially had the CD spectrum of native structure, but it changed with time to that characteristic of β-sheet structure.  相似文献   

4.
The mating hormones α1 and α2 induce sexual reproduction of the phytopathogenic genus Phytophthora. To demonstrate the structural elements responsible to hormonal activity, 17 derivatives of α1 and α2 were synthesized and their hormonal activity (oospore-inducing activity) was evaluated. The terminal ester derivatives of α1 (diacetate and dibenzoate) retained the hormonal activity, whereas a dicarbamate derivative completely suppressed the activity. Even monocarbamates showed weak activities; among them the 1-O-carbamate was less active than 16-O-carbamate, suggesting that the 1-OH group is a little more important than 16-OH. Dihydro, dehydro, and demethyl derivatives exhibited the minimum level of activity. Surviving activity of 15-epi-α1 suggested a less importance of this stereochemistry. Contrary to α1, not only the terminal diacetate derivative but also monoacetates of α2 exhibited no or little activity. Among the monoacetates, 1-O-acetyl-α2 exhibited little yet relatively better activity than the others. No activity was observed for mono- and dicarbamoyl derivatives of α2. Dihydro α2 with the saturated double bond lost most of the activity. These findings suggest that both the mating hormones α1 and α2 require most of the functional (hydroxyl, keto, and olefinic) groups they possess in their natural form for inducing the sexual reproduction of Phytophthora.  相似文献   

5.
αB-Crystallin, ubiquitously expressed in many tissues including the ocular lens, is a small heat shock protein that can prevent protein aggregation. A number of post-translation modifications are reported to modify αB-crystallin function. Recent studies have identified αB-crystallin lysine residues are modified by acetylation and ubiquitination. Therefore, we sought to determine the effects of lysine to alanine substitution on αB-crystallin functions including chaperone activity and modulation of actin polymerization. Analysis of the ten substitution mutants as recombinant proteins indicated all the proteins were soluble and formed oligomeric complexes similar to wildtype protein. Lysozyme aggregation induced by chemical treatment indicated that K82, K90, K121, K166 and K174/K175 were required for efficient chaperone activity. Thermal induction of γ-crystallin aggregation could be prevented by all αB-crystallin substitution mutants. These αB-crystallin mutants also were able to mediate wildtype levels of actin polymerization. Further analysis of two clones with either enhanced or reduced chaperone activity on individual client substrates or actin polymerization indicated both retained broad chaperone activity and anti-apoptotic activity. Collectively, these studies show the requirements for lysine residues in αB-crystallin function.  相似文献   

6.
Immunochemical studies on the specificity of soybean agglutinin   总被引:9,自引:0,他引:9  
The specificity of the purified soybean agglutinin has been studied immunochemically by quantitative precipitin and quantitative precipitin inhibition assays. The lectin is precipitated by human A and Lea blood-group substance, by the products of the second, third, fourth, and fifth stages of periodate oxidation of a human H blood-group substance (JS), and by precursor blood-group substances, as well as by a pig-submaxillary mucin having blood-group A activity, by partially hydrolyzed blood-group B substances (Pl fraction), and by group C streptococcal polysaccharide. The activity is attributable to terminal α-linked 2-acetamido-2-deoxy-d-galactopyranosyl or to α- or β-d-galactopyranosyl residues. The lectin did not precipitate with human blood-group H substances, with the product of the first stage of periodate oxidation (JS), with streptococcal group A polysaccharide, or with pig-submaxillary mucin devoid of blood-group A activity, and is poorly precipitated by blood-group B substances. Inhibition of precipitation with various monosaccharides indicated that the lectin is strongly specific for 2-acetamido-2-deoxy-d-galactose and for its oligosaccharides, and to a lesser extent for d-galactose and its oligosaccharides; the α-glycosides of both sugars were slightly more reactive than the β-glycosides of 2-acetamido-2-deoxy-d-galactose, and both α- and β-glycosides were more active than the free monosaccharides. Aromatic α- and β-glycosides of 2-acetamido-2-deoxy-d-galactose and d-galactose were better inhibitors than the corresponding methyl or ethyl compounds. The blood-group A trisaccharide α-d-GalNAcp-(1→3)-β-d-Galp-(1→3)-d-GlcNAc was more active than the disaccharide lectins by the use of precipitation with polysaccharides, as well as inhibition reactions, is essential to the understanding of their reactivity with cell-surface receptors.  相似文献   

7.
An α-amylase that hydrolyzes unmodified starch or amylopectin azure was demonstrated in crude and partially purified extracts prepared from whole carcasses of sweetpotato whiteflies (SPW) (Bemisia tabaci Genn.).All nymphal instars and adult SPW, including newly eclosed crawlers that had not yet fed on plant materials, were found to have active α-amylase. α-Amylase activity per mg protein was greatest in 1st instars and decreased with age up to the “pupal” stage, with a very slight increase in activity in adults. However, activity per individual did not differ substantially as a function of age.The α-amylase had an apparent molecular weight of about 70 kDa, an isoelectric point of 6.32 and eluted with about 250 mM NaCl from a strongly basic anion-exchange column.The enzyme activity was inhibited by EDTA and not activated by either NaCl or KNO3. CaCl2 strongly enhanced activity.α-Amylase activity was greatest at pH 7.0, but there was considerable activity at pHs above 7.0.The Km of the α-amylase was 1.47 Mm with p-nitrophenyl α-d-malto-heptaoside as substrate.The presence of an amylolytic enzyme in a phloem-feeding insect is unexpected and raises questions about current assumptions of feeding behavior of this species.  相似文献   

8.
Isopycnic sucrose gradient separation of rat liver organelles revealed the presence of two distinct branched-chain α-keto acid decarboxylase activities; a mitochondrial activity, which decarboxylates the three branched-chain α-keto acids and requires CoA and NAD+ and a cytosolic activity, which decarboxylates α-ketoisocaproate, but not α-ketoisovalerate, or α-keto-β-methylvalerate. The latter enzyme does not require added CoA or NAD+. Assay conditions for the cytosolic α-ketoisocaproate decarboxylase activity were optimized and this activity was partially characterized. In rat liver cytosol preparations this activity has a pH optimum of 6.5 and is activated by 1.5 m ammonium sulfate. The decarboxylase activity has an apparent Km of 0.03 mm for α-ketoisocaproate when optimized assay conditions are employed. Phenylpyruvate is a very potent inhibitor. α-Ketoisovalerate, α-keto-β-methylvalerate, α-ketobutyrate, and α-ketononanoate also inhibit the α-ketoisocaproate decarboxylase activity. The data indicate that the soluble α-ketoisocaproate decarboxylase is an oxidase. Rat liver cytosol preparations consumed oxygen when either α-ketoisocaproate or α-keto-γ-methiolbutyrate were added. None of the other α-keto acids tested stimulated oxygen consumption. 1-14C-Labeled α-keto-γ-methiolbutyrate is also decarboxylated by cytosol preparations. The α-ketoisocaproate oxidase was purified 20-fold from a 70,000g supernatant fraction of a rat liver homogenate. In these preparations the activity was increased 4-fold by the addition of dithiothreitol, ferrous iron, and ascorbate. The major product of this enzyme activity is β-hydroxyisovalerate. Isovalerate is not a free intermediate in the reaction. The data indicate an alternative pathway for metabolism of α-ketoisocaproate which produces β-hydroxyisovalerate.  相似文献   

9.
10.
报道了一个不需同位素和HPLC的α-1,6-岩藻糖转移酶(α1,6FuT,又称核心岩藻糖转移酶)的测定法,包括从正常人血浆提纯运铁蛋白,消化成带有天冬酰胺(Asn)的二天线N-糖链,去除外端唾液酸和半乳糖后,用生物素酰胺乙酰基团标记其Asn,并以此生物素衍生物标记的Asn-七糖的N-糖链为受体底物,GDP-L-岩藻糖为供体底物,用LCA柱吸附法分离岩藻糖化后的产物,再用HRp-Avidin交联物与柱上带有生物素的产物结合,此HRP-Avidin-生物素。岩藻糖化产物从柱上洗脱后测定HRP活力可代表α1,6FuT活力。此法在较宽的范围内,产物量与酶量和反应时间成正比.人肝细胞癌、亚硝胺诱发大鼠肝癌后期或用佛波酯(PMA)处理人肝癌细胞后,α1,6FuT增高,而用视黄酸或db-cAMP处理人肝癌细胞后,则该酶活力降低。  相似文献   

11.
In addition to their key role as structural lens proteins, α-crystallins also appear to confer protection against many eye diseases, including cataract, retinitis pigmentosa, and macular degeneration. Exogenous recombinant α-crystallin proteins were examined for their ability to prevent cell death induced by heat or oxidative stress in a human lens epithelial cell line (HLE-B3). Wild type αA- or αB-crystallin (WT-αA and WT-αB) and αA- or αB-crystallins, modified by the addition of a cell penetration peptide (CPP) designed to enhance the uptake of proteins into cells (gC-αB, TAT-αB, gC-αA), were produced by recombinant methods. In vitro chaperone-like assays were used to assay the ability of α-crystallins to protect client proteins from chemical or heat induced aggregation. In vivo viability assays were performed in HLE-B3 to determine whether pre-treatment with α-crystallins reduced death after exposure to oxidative or heat stress. Most of the five recombinant α-crystallin proteins tested conferred some in vitro protection from protein aggregation, with the greatest effect seen with WT-αB and gC-αB. All α-crystallins displayed significant protection to oxidative stress induced cell death, while only the αB-crystallins reduced cell death induced by thermal stress. Our findings indicate that the addition of the gC tag enhanced the protective effect of αB-crystallin against oxidative but not thermally-induced cell death. In conclusion, modifications that increase the uptake of α-crystallin proteins into cells, without destroying their chaperone-like activity and anti-apoptotic functions, create the potential to use these proteins therapeutically.  相似文献   

12.
Uteshev VV 《PloS one》2012,7(3):e32951
Positive allosteric modulators of highly Ca(2+)-permeable α7 nicotinic acetylcholine receptors, such as PNU-120596, may become useful therapeutic tools supporting neuronal survival and function. However, despite promising results, the initial optimism has been tempered by the concerns for cytotoxicity. The same concentration of a given nicotinic agent can be neuroprotective, ineffective or neurotoxic due to differences in the expression of α7 receptors and susceptibility to Ca(2+) influx among various subtypes of neurons. Resolution of these concerns may require an ability to reliably detect, evaluate and optimize the extent of α7 somatic ionic influx, a key determinant of the likelihood of neuronal survival and function. In the presence of PNU-120596 and physiological choline (~10 μM), the activity of individual α7 channels can be detected in whole-cell recordings as step-like current/voltage deviations. However, the extent of α7 somatic influx remains elusive because the activity of individual α7 channels may not be integrated across the entire soma, instead affecting only specific subdomains located in the channel vicinity. Such a compartmentalization may obstruct detection and integration of α7 currents, causing an underestimation of α7 activity. By contrast, if step-like α7 currents are integrated across the soma, then a reliable quantification of α7 influx in whole-cell recordings is possible and could provide a rational basis for optimization of conditions that support survival of α7-expressing neurons. This approach can be used to directly correlate α7 single-channel activity to neuronal function. In this study, somatic dual-patch recordings were conducted using large hypothalamic and hippocampal neurons in acute coronal rat brain slices. The results demonstrate that the membrane electrotonic properties do not impede somatic signaling, allowing reliable estimates of somatic ionic and Ca(2+) influx through α7 channels, while the somatic space-clamp error is minimal (~0.01 mV/μm). These research efforts could benefit optimization of potential α7-PAM-based therapies.  相似文献   

13.
α-Difluoromethylornithine (α-DFMO), an enzyme-activated irreversible inhibitor of ornithine decarboxylase (ODC), retarded the growth rate of EMT6, a murine mammary sarcoma, in tissue culture. When female BALB/C mice were inoculated subcutaneously with EMT6 cells, administration of α-DFMO as a 3% solution in the drinking water beginning 5 days after tumor inoculation resulted in an 80% inhibition of tumor weight gain by day 27 compared to controls. This treatment regimen, equivalent to 4.4 g α-DFMO/kg/day, decreased tumor ODC activity, stimulated S-adenosyl-L-methionine decarboxylase (SAM-DC) activity and markedly decreased tumoral putrescine and spermidine, but not spermine, concentrations. The tumor growth inhibitory effects of α-DFMO were similar to those obtained with 4 weekly doses of cyclophosphamide (100 mg/kg i.p. beginning on day 6 post-inoculation). The combination of cyclophosphamide plus α-DFMO caused the same or greater inhibition of tumor growth than either treatment alone. When the SAM-DC and diamine oxidase inhibitor, 1,1'-((methylethanediylidene)-dinitrilo) bis (3-amino-guanidine), was added to α-DFMO treatment, tumor SAM-DC activity, putrescine and spermidine concentrations, but not ODC activity, returned to control values and the anti-proliferative effects of α-DFMO were reversed. These results suggest that α-DFMO treatment is an effective non-toxic method of inhibiting tumor growth by a mechanism involving polyamine depletion.  相似文献   

14.
The objectives of the research were to determine the position of quantitative trait loci (QTL) for α-amylase activity on the genetic map of a rye recombinant inbred line population-S120?×?S76-and to compare them to known QTL for preharvest sprouting and heading earliness. Fourteen QTL for α-amylase activity on all seven chromosomes were identified. The detected QTL were responsible for 6.09-23.32% of α-amylase activity variation. The lowest LOD value (2.22) was achieved by locus QAa4R-M3 and the highest (7.79) by locus QAa7R-M1. Some QTL intervals for features of interest overlapped partially or completely. There were six overlapping QTL for α-amylase activity and preharvest sprouting (on 1R, 3R, 4R, 6R, 7R) and the same number for preharvest sprouting and heading earliness (on 1R, 2R, 6R, 7R). Furthermore, there was one interval partially common to all three traits, mapped on the long arm of chromosome 1R. Testing of lines originating from hybrid breeding programs, such as S120 and S76, may provide important information about the most significant genes and markers for selection in commercial breeding. Among the statistically significant markers selected in the Kruskal-Wallis test (P?相似文献   

15.
(1) The effects of thiamine deficiency as produced by pyrithiamine injections have been studied in the weanling mouse. Selected metabolites were measured in extracts from brain and liver of quick-frozen animals. Pyruvate and α-oxoglutarate dehydrogenases and transketolase were also measured. (2) In deficient brain, pyruvate and α-oxoglutarate levels were greatly increased. Xylulose-5-P and 6-P-gluconate were more than doubled. Lactate, glucose-6-P, glucose and P-creatine were moderately elevated, and ATP was increased a little. Glutamate was depressed. (3) In deficient liver, α-oxoglutarate was much increased and ATP was twice normal. Glycogen, glucose, glucose-6-P, 6-P-gluconate, pyruvate, and glutamate were not different from the controls. Lactate was depressed. (4) Pyruvate dehydrogenase activity was reduced to 25 per cent or less in brain and liver. Transketolase and α-oxoglutarate dehydrogenase activities were reduced to 50 per cent in both organs. (5) Thiamine treatment, within 5 hr, largely reversed the metabolite changes brought on by pyrithiamine in brain. At the same time pyruvate and α-oxoglutarate dehydrogenase activities were increased 60 per cent or more in both brain and liver. Transketolase activity in liver was only increased 20 per cent at this time, however, and in brain was unchanged. (6) The results are interpreted to indicate that inhibition of pyruvate and α-oxoglutarate dehydrogenases in brain is sufficient to depress in vivo function. The same seems true for the inhibition of α-oxoglutarate dehydrogenase in liver. However, the changes seen in brain 6-P-gluconate and xyluIose-5-P probably depend on factors other than, or in addition to, the decrease in transketolase activity. It seems worthy of emphasis that in spite of the partial metabolic blocks high-energy phosphate stores were actually increased.  相似文献   

16.
Activity of flexor and extensor γ- and α-motoneurons during cold tremor was investigated in anesthetized cats. General hypothermia and local cold stimulation or electrical stimulation of the dorsomedial region of the posterior hypothalamus were shown to induce primary activation of flexor and simultaneous inhibition of activity of extensor γ-motoneurons, followed by activation of flexor α-motoneurons (extensor muscles are not involved in temperature regulating activity). Electrical stimulation of the medial preoptic region during cold tremor led to primary inhibition of flexor α-motoneuron activity. It is concluded from these results that the development of temperature-regulating muscular activity is preceded by activation of γ-motoneurons. The use of cold tremor induced in anesthetized cats as a natural model with which to study the role of the fusimotor system in regulation of function of motor nuclei during postural activity is argued.  相似文献   

17.
粘虫中肠α-淀粉酶活性的敏感性研究   总被引:2,自引:1,他引:1  
黄青春  卓军  曹松  钱旭红 《昆虫学报》2006,49(2):189-193
研究了不同酶反应缓冲体系、pH值、氯离子浓度以及噁唑哒嗪对5龄2日粘虫 Pseudaletia separata Walker 中肠α-淀粉酶活性的影响。结果表明,乙酸-乙酸钠缓冲体系(pH 5.8)和磷酸氢二钠-磷酸二氢钠缓冲体系(pH 8.0)有利于增强α-淀粉酶活性,比活力最高分别达到4.49和4.97。在乙酸-乙酸钠缓冲体系(pH 5.8)中,5、10、20、40和80 mmol/L氯离子浓度引起α-淀粉酶活性呈现先减弱后增强的变化规律,而在磷酸氢二钠-磷酸二氢钠缓冲体系(pH 8.0)中仅呈现减弱的趋势。1.4 mmol/L噁唑哒嗪对α-淀粉酶活性的抑制率可达70%,但抑制程度随着反应体系中蛋白含量的增加而逐渐降低。  相似文献   

18.
A set of α-quaternary 3-chloro-1-hydroxyalkylphosphonates, analogues of fosfomycin and fosfonochlorin, some of which are new compounds, was synthesized. The compounds were screened for bioactivity against several clinical and standard microbial isolates. Some were found to have moderate activity. The activity was higher with phenyl protection of the phosphoryl ester groups and α-phenyl substitution. Compound 11 was as effective or more potent than fosfomycin or chloramphenicol against several Gram-negative bacteria as well as against some Gram-positive ones.  相似文献   

19.
This study describes the distribution of an α-melanocyte stimulating hormone (α-MSH) acetyltransferase (MAT) in rat brain and pituitary gland. Highest activities of MAT were found in the neurointermediate lobe of the pituitary gland with the anterior lobe containing slightly less. Within the brain, lowest MAT activities were measured in the hypothalamus, the region which contained the highest concentrations of α-MSH. Relatively high enzyme activities of MAT were measured in the hippocampus, cortex and cerebellum—regions with very low α-MSH concentrations. The fact that MAT activity levels did not parallel α-MSH concentrations indicates that MAT was not solely localized to α-MSH synthesizing neurons or endocrine cells. Furthermore, arcuate nucleus lesions which depleted brain α-MSH failed to deplete MAT activity. Although MAT was not solely localized to α-MSH synthesizing cells, it may have functional significance for α-MSH acetylation due to compartmentalization with α-MSH in α-MSH synthesizing endocrine cells and neurons. Alternatively a second regionally specific MAT may exist.  相似文献   

20.
Rekas A  Ahn KJ  Kim J  Carver JA 《Proteins》2012,80(5):1316-1325
α-Synuclein is the principal component of the Lewy body deposits that are characteristic of Parkinson's disease. In vivo, and under physiological conditions in vitro, α-synuclein aggregates to form amyloid fibrils, a process that is likely to be associated with the development of Parkinson's disease. α-Synuclein also possesses chaperone activity to prevent the precipitation of amorphously aggregating target proteins, as demonstrated in vitro. α-Synuclein is an intrinsically disordered (i.e., unstructured) protein of 140 amino acids in length, and therefore studies on its fragments can be correlated directly to the functional role of these regions in the intact protein. In this study, the fragment containing residues 61-140 [α-syn(61-140)] was observed to be highly amyloidogenic and was as effective a chaperone in vitro as the full-length protein, while the N- and C-terminal fragments α-syn(1-60) and α-syn(96-140) had no intrinsic chaperone activity. Interestingly, full-length fibrillar α-synuclein had greater chaperone activity than nonfibrillar α-synuclein. It is concluded that the amyloidogenic NAC region (residues 61-95) contains the chaperone-binding site which is optimized for target protein binding as a result of its β-sheet formation and/or ordered aggregation by α-synuclein. On the other hand, the first 60 residues of α-synuclein modulate the protein's chaperone-active site, while at the same time protecting α-synuclein from fibrillation. On its own, however, this fragment [α-syn(1-60)] had a tendency to aggregate amorphously. As a result of this study, the functional roles of the various regions of α-synuclein in its chaperone activity have been delineated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号