首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymatic studies with Brevibacterium ammoniagenes ATCC 6872 demonstrated that 5-phosphoribose pyrophosphokinase and purinenucleotide pyrophosphorylase were involved in the nucleotide synthesis from purine base by ATCC 6872 and that its actual accumulation from base seemed to take place extracellularly through the action of the salvage enzymes leaked out of cells. Mn2+ deficiency and the simultaneous presence of pantothenate and thiamine, essential for efficient nucleotide accumulation, caused the extracellular leakage of the two enzymes with the simultaneous excretion of R5P. In the direct IMP fermentation with the adenine auxotroph, it was verified that hypoxanthine first produced de novo was reconverted into IMP extracellularly by the salvage enzymes as speculated previously.

A guanine-requiring mutant of Brevibacterium ammoniagenes ATCC 6872 accumulated a large amonnt of 5′-xanthosine-monophosphate (abbreviated as XMP).

The quantity of XMP accumulated by the strain was affected significantly by guanine levels in the medium. The suppression of XMP accumulation by an excessive addition of guanine compounds was recovered by the supply of casamino acids in the medium.

An enzyme in the pathway of de novo XMP synthesis, IMP dehydrogenase (IMP: NAD oxidoreductase, EC 1.2.1.14), was repressed and inhibited by guanine compounds.

The facts that an exogenous xanthine was not converted to XMP by the growing cells and that the activity of XMP-pyrophosphorylase was very low or deficient suggest that XMP accumulation by the strain would be probably due to the direct excretion of the nucleotide from the cells.  相似文献   

2.
In attempts to obtain GMP producing strains, Brevibacterium ammoniagenes was treated with UV, N.T.G. or D.E.S. as a mutagen. Adenine-guanine requiring mutants were obtained from an adenine-requiring mutant of Brev. ammoniagenes, KY 3482–9 and two of them, presumably adenine-xanthine requiring mutants, were then reverted to mutants which required only adenine for their growth.

Although these revertants were not able to accumulate a copious amount of GMP, most of them and of adenine-guanine requiring mutants produced larger amounts of IMP than the parent adenine-requiring strain.

Effects of Mn2+ and purine bases in the medium on IMP production by these mutants were examined and IMP productivities of these mutants were compared with the parent strain under optimal conditions.

These mutagenic treatments were thus proved to be effective for the increase of de novo IMP production by Brev. ammoniagenes mutants.

Brevibacterium ammoniagenes ATCC 6872 accumulates 5′-GDP and -GTP, or 5′-ADP and -ATP together with GMP or AMP in nucleotide fermentation by salvage synthesis.

With cell free extract of this strain, transphosphorylating reactions of AMP or GMP were investigated.

ATP-AMP transphosphorylating enzyme(s) was partially purified to 21.7 fold with acid treatment, salting-out and column chromatography.

In ATP-AMP and ATP-GMP transphosphorylating reactins, optimal conditions were decided such as for concentrations of enzyme, of MgCl2 and of phosphate donor, pH and cell age as the enzyme sources.

Specificities of phosphate donors and acceptors were examined with both the partially purified enzymes or the sonicate. AMP and GMP were phosphorylated by ATP rapidly, but IMP and XMP were not, therefore supporting our previous finding that Brev. ammoniagenes could not accumulated IDP, ITP, XDP and XTP in IMP and XMP fermentation, respectively.

Although ATP was the best donor for both AMP and GMP phosphorylations, other nucleoside triphosphates and PRPP were used as phosphate donors.

Furthermore, phosphorylation of ADP to ATP was investigated and possible mechanisms of nucleoside di- or triphosphates synthesis in the nucleotide fermentation were discussed.

From these results, it is suggested as a possible mechanism for nucleoside di- and triphosphate accumulation by Brev. Ammoniagenes, that a nucleoside monophosphate formed is phosphorylated to a nucleoside di-phosphate with ATP or other phosphate donors and then the nucleoside diphosphate is converted to a triphosphate with these phosphate donors.

Both AMP and GMP were transphosphorylated rapidly to the corresponding nucleoside-diphosphates and triphosphates by ATP and by other high energy phosphate compounds with cell free extracts of Brevibacterium ammoniagenes.

Some enzyme inhibitors, such as metals and PCMB were shown to inhibit the phosphorylations of AMP and GMP. Higher levels of ATP, ADP, GTP and GDP also inhibited the activity of the partially purified ATP-AMP transphosphorylating enzyme(s).

In guanine nucleotides fermentation by salvage synthesis with this strain, addition of these inhibitors to the medium increased the amounts of GMP and total guanine nucleotides accumulated.

On the contrary, supplement of xylene or of other organic solvents to the medium stimulated the accumulation of both GTP and total guanine compouuds in this fermentation. From enzymatic studies, these solvents are presumed to have the ability to change cell permeability.

Such findings give an effective method for controlling the amounts of nucleotides accumulated in these fermentations.  相似文献   

3.
Attempts were made with success to develop a chemically defined medium for 5′-purine ribonucleotide production by Brevibacterium ammoniagenes ATCC 6872 and its adenine auxotroph KY 7208.

The results demonstrated that the presence of pantothenate and thiamine and a limiting level of manganese in the medium are essential for IMP production from hypoxanthine. These conditions were likewise indispensable for GMP, GDP and GTP productions and AMP, ADP and ATP productions from corresponding bases by ATCC 6872 and for direct IMP fermentation with KY 7208 strain.

It was further shown that R5P accumulation by ATCG 6872 culture, in the absence of bases, was affected by the two vitamins and Mn2+ exactly in the same way as the nucleotide synthesis. Morphogenetic alterations were induced under such conditions as two vitamins added and Mn2+ kept deficient.  相似文献   

4.
1. Suitable agar plate media were selected for isolation of nucleotide producing strains, by salvage synthesis, from natural sources. Since this agar medium contains a high concentration of phosphates, manganese and glucose, it is specific for these bacteria.

2. With this plate medium, 113 bacterial strains accumulating 5′inosinic acid (IMP) or IMP-like substances were isolated effectively from feces of a variety of birds and mammals and from soils.

Some of the strains isolated were recognized to accumulate other nucleotides, purine bases and sugars, such as guanine nucleotides, XMP, xanthine, ribulose or xylnlose, with or without hypoxanthine in the media.

3. Five strains of IMP accumulating bacteria were identified; two were classified as Brevibacteriurm, two as Corynebacterium and one as Arthrobacterium species by taxonomical studies. But their characteristics did not completely coincide with those of bacteria described in Bergey’s manual.

4. One of the IMP producing bacteria isolated, culture No. 21–26, actually consisted of two separate strains, namely No. 21–26–101 and No. 21–26–102. The highest production of IMP or guanine nucleotides was obtained, when each strain was inoculated together to the fermentation medium from each seed culture in the same inoculum size.

5. The nucleotide productions by No. 21–26–101 or No. 21–26–102 with authentic strains were examined by the mixed culture technique. It was found that production of IMP or guanine nucleotides by Brevibacterium ammoniagenes ATCC 6871 was stimulated remarkably in the presence of No. 21–26–102.  相似文献   

5.
Brevibacterium insectiphilium KY 3446 (Steinhous, Breed AHU 1401) was found to accumulate IMP from hypoxanthine and UMP from uracil, respectively. This strain is thus considered to present the fourth example in salvage-type fermentation, in addition to Micrococcus sodonensis, Arthrobacter citreus and Brevibacterium ammoniagenes reported previously.

IMP from adenine and UMP from cytosine were also produced by KY 3446, respectively. Further, the addition of inosine and adenosine instead of the bases also caused IMP accumulation.

This strain grew well on sucrose medium, and produced IMP and UMP in higher yields on sucrose than on glucose medium.

Excessive amounts of Mn2+ stimulated growth, but markedly inhibited IMP production. The optimal concentration of Mn2+ for IMP accumulation induced morphogenetic alterations from normal and small to abnormal and large cells.  相似文献   

6.
5′Xanthylic acid was efficiently converted to 5′guanine nucleotides (5′GMP, 5′GDP, and 5′GTP) without being degraded to guanine via 5′GMP by decoyinine resistant mutants of strain KY 13315 which had been isolated from Brevibacterium ammoniagenes and was practically devoid of 5′nucleotide degrading activity. The concentration of phosphate in the medium showed a profound effect on the ratio of the accumulated 5′guanine nucleotides, making it possible to direct the fermentation towards 5′GMP or 5′GTP. A direct accumulation of 5′guanine nucleotides from carbohydrate was possible by mixed cultivation of a 5′XMP accumulating strain and a 5′XMP converting mutant. A maximum concentration of 9.67 mg of 5′guanine nucleotides per ml was obtained directly from glucose in such a mixed culture.  相似文献   

7.
An adenine-requiring mutant (KY7208) of Brevibacterium ammoniagenes ATTC 6872 was found to accumulate an appreciable quantity of IMP and hypoxanthine in the culture liquid.

Crystalline IMP was isolated from culture broth of KY7208 by the use of ion-exchange columns. The preparation obtained was definitely identified as 5′-IMP, based on the results on paperchromatography, UV and IR absorption spectra, and analyses of its hydrolysates.

Growth responses of this mutant were demonstrated to adenine and adenosine, but not to 5′-AMP, 3′-AMP and 5′-AMP.

Over 5 mg of IMP per ml of broth were produced by the organism in natural medium consisting of glucose, yeast extract, urea, high concentrations of phosphate and magnesim salts, and others. The chemical changes showed that hypoxanthine first accumulated in the earlier stage of fermentation, and IMP synthesis then took place with the disappearance of hypoxanthine in the later stage of fermentation.  相似文献   

8.
A decoyinine resistant, KY 13501, isolated after nitrosoguanidine treatment from Brevibacterium ammoniagenes ATCC 6872 converted 5′XMP added in fermentation media to guanine derivatives and accumulated them in the media. The converted substances were identified as guanine, 5′GMP, 5′GDP, and 5′GTP. The conditions for the conversion were examined and the following points were clarified. (1) Very low concentration of manganese ion (Mn2+) showed profound effects on the conversion and the excessive amounts of the ion severely repressed the conversion. (2) Under limitation of Mn2+, 5′XMP was converted most efficiently when added at inoculation time. (3) The inhibition of the conversion by excessive amount of Mn2+ was completely released by addition of a surface activating agent, polyoxyethylene stearylamine. (4) For the conversion, it was essential to maintain pH of the media at 7.5 to 8.0 and supply ammonium ion.  相似文献   

9.
Growth of Bacillus subtilis AG169 that produced large amounts of xanthosine and guanosine was inhibited by psicofuranine. When AG169 was mutated to resistance against psicofuranine, a mutant, GP–1, which yielded more guanosine was obtained. Psicofuranine did not inhibit growth of GP–1 any more. The guanosine 5′-monophosphate (GMP) synthetase activities were then assayed. In GP–1, the specific activity decreased about half, the complete loss of repression by GMP was found, and the inhibition by GMP was slightly loosed, when compared with those of AG169.

Furthermore, as growth of GP–1 was strongly inhibited by decoyinine, decoyinine resistant mutants were derived from GP–1. Of these mutants, two strains, MG–1 and MG–4, were resistant to decoyinine completely and showed the exclusive accumulation of guanosine in high yields, i.e. 16.0 and 15.5 g of guanosine per liter with weight yields of 20.0 and 19.4% of consumed sugar, respectively. GMP synthetase activity of MG–1 increased remarkably in comparison with that of GP–1 or AG169, and the inhibitions by GMP, psicofuranine and decoyinine were completely released in MG–1. Namely, the psicofuranine and decoyinine resistances seemed to cause mainly variations of GMP synthetase, and as results, the conversion of xanthosine 5′-monophosphate (XMP) to GMP proceeded more smoothly, and a larger amount of guanosine was accumulated.  相似文献   

10.
A major problem involved in the direct fermentation of nucleotides is their breakdown by phosphohydrolases. Thus, adenine auxotrophs of most microorganisms produce hypoxanthine and/or inosine rather than inosine 5′-monophosphate (IMP) while guanine auxotrophs excrete xanthosine rather than xanthosine 5′-monophosphate (XMP). Examination of a Bacillus subtilis mutant producing hypoxanthine plus inosine revealed at least four phosphohydrolases, three of which could attack nucleotides. Even when the extracellular nucleotide phosphohydrolase was inhibited by Cu+2 and its surface-bound alkaline phosphohydrolase was repressed and inhibited by inorganic phosphate, or removed by mutation, the breakdown products were still the only products of fermentation. Under these conditions, the third enzyme, a surface-bound non-repressible nucleotide phosphohydrolase was still active. It appears, at least in B. subtilis, that excretion is dependent upon breakdown by this enzyme and if hydrolysis does not occur, excretion of purine nucleotides is feedback inhibited by the resultant high intracellular IMP concentration. Corynebacterium glutamicum mutants, on the other hand, can excrete intact nucleotides, and direct fermentations for IMP, XMP, and GMP have been described. An examination of phosphohydrolases in a GMP-producing culture revealed no extracellular or surface enzymes. Disruption of the cells resulted in liberation of cellular phosphohydrolase activity with a substrate specificity remarkably similar to the flavorenhancing properties of the 5′-nucleotides. The order of decreasing susceptibility was GMP, IMP, XMP; AMP was not attacked.  相似文献   

11.
A seed medium and a fermentation medium for nucleotide fermentations such as 5′ IMP, 5′GMP (plus GDP and GTP) and 5′AMP (plus ADP and ATP) with Brevibacterirm ammoniagenes ATCC 6872 were entirely chemically defined, with the use of a mixture of five amino acids.

As a result, the presence of Zn2+, Fe2+ and Ca2+ in addition to Mn2+ was found to be essential for the nucleotide fermentations. In particular, Zn2+ levels as well as Mn2+ affected nucleotide productions remarkably. Various fermentations proceeded favorably only when suboptimum levels of manganese (20~30 μg/liter) and zinc (100~200 μg/liter) were simultaneously present. This effect of trace metals was attributed to the fact that the excretion of R5P, a precursor of nucleotides, and those enzymes catalyzing reactions synthesizing nucleotides from R5P, ATP and purine bases were greatly stimulated by trace metals in cooperation with two vitamins, Ca-pantothenate and thiamine, and presumably high concentrations of phosphate and magnesium.

Furthermore, it was revealed that some metals were able to control the amounts of nucleotides accumulated when they were added to the broth during fermentation. For example, Hg2+ and Ag+ could increase the amounts of 5′GMP or 5′AMP, and decrease those of GTP and ATP.

Growth responses of Brevibacterium ammoniagenes ATCC 6872, capable of accumulating purine nucleotides, were investigated by the use of completely defined media.
  1. Casamino acids required for its growth could be replaced by a mixture of l-histidine, l-homoserine, glycine, d, l-alanine and l-lysine. A completely defined medium for nucleotide productions was thus established by the use of this mixture.

  2. High levels of phosphate inhibited growth markedly, and this inhibition was overcome by the simultaneous addition 1) of hign levels of Mg2+ and 2) of Mn2+, 3) pantothenate and 4) thiamine. Ca2+ had also a stimulatory effect on the growth. Therefore, a clear growth response to Mn2+ levels and the requirement of the two vitamins for growth emerged only under the conditions of high phosphate and magnesium salts. These 4 factors were found entirely the same as factors essential for nucleotide accumulations by Br. ammoniagenes.

  相似文献   

12.
Unbalanced growth induced by depletion of manganese ions was a prerequisite for production of ribonucleotides in a high salt mineral medium with the wildtype strain Brevibacterium ammoniagenes ATCC 6872. The concentration of manganese strictly controlled the overall deoxyribonucleic acid (DNA) synthesis, whereas ribonucleic acid (RNA), protein and cell wall synthesis remained essentially unimpaired in the manganese-lacking cells.The reversibility of inhibition of overall DNA synthesis was shown by enhanced incorporation (up to threefold compared to the cultures supplied with sufficient manganese) of [8-14C] adenine into alkali-stable, trichloroacetic acid-insoluble material after subsequent addition of 10 M MnCl2 to 15 h-old depleted cultures.The results of inhibitor studies on the restoration of overall DNA synthesis due to subsequent addition of manganese ions to depleted cultures suggest that ribonucleotide reduction is the primary target of the manganese starvation during nucleotide fermentation with Brevibacterium ammoniagenes ATCC 6872.  相似文献   

13.
The accumulation of 5′-inosinic acid (IMP) by a mutant, KY 13102, induced from Brevibacterium ammoniagenes ATCC 6872 by ultraviolet light irradiation, was examined. Although growth was stimulated by adenine or adenosine, the microorganism showed fair growth in the medium containing amino acids but no adenine. Among six kinds of natural nutrients tested, meat extract and Casamino Acids were suitable for the accumulation of IMP. Manganese ion strongly affected growth, the accumulation of IMP and hypoxanthine, and cell morphology. Among amino acids tested, L-methionine, L-proline, and L-valine stimulated IMP accumulation. In the medium containing 1.0 g of L-proline per liter, 12.8 mg of IMP per ml was accumulated. The mechanism of IMP accumulation by the mutant is discussed.  相似文献   

14.
The accumulation of 5′-inosinic acid (IMP) by a mutant, KY 13102, induced from Brevibacterium ammoniagenes ATCC 6872 by ultraviolet light irradiation, was examined. Although growth was stimulated by adenine or adenosine, the microorganism showed fair growth in the medium containing amino acids but no adenine. Among six kinds of natural nutrients tested, meat extract and Casamino Acids were suitable for the accumulation of IMP. Manganese ion strongly affected growth, the accumulation of IMP and hypoxanthine, and cell morphology. Among amino acids tested, L-methionine, L-proline, and L-valine stimulated IMP accumulation. In the medium containing 1.0 g of L-proline per liter, 12.8 mg of IMP per ml was accumulated. The mechanism of IMP accumulation by the mutant is discussed.  相似文献   

15.
The effects of manganese ion (Mn2+) and adenine on the accumulation of 5′ inosinic acid (IMP) by Brevibacterium ammoniagenes KY 13102, were examined. Adenine regulated the accumulation of IMP in the presence of limiting amounts of Mn2+ and the accumulation of hypoxanthine (Hx) in the presence of excessive amounts of the ion. Manganese ion markedly affected IMP accumulations, cell growth and cellular morphology. These biological changes caused by Mn2+ are related to changes in the syntheses of macromolecules. The cells cultivated under limitation of Mn2+ showed abnormally elongated and irregular forms irrespective of adenine levels and had smaller nucleotide pools than those of the cells in the presence of excessive Mn2+. The Mn2+ limited cells showed ability to accumulate IMP directly in the cell suspension but the Mn2+ excessive cells did not accumulated IMP but Hx. These results indicated that adenine and Mn2+ affected the IMP accumulation independently each other and adenine acted as a feedback regulator on de novo synthesis of purine nucleotide and limitation of Mn2+ caused morphological changes, resulting in changes of permeability of the cells. The fatty acid contents of the Mn2+ limited cells were higher than those of the Mn2+ excessive cells and the ratio of unsaturated fatty acid to saturated one was higher in the former cells.  相似文献   

16.
Micrococcus sodonensis KY 3765 and Arthrobacter citreus KY 3155 were found capable of accumulating IMP in media supplemented with hypoxanthine as a precursor. High concentrations of phosphate and magnesium salts were required for high yields of IMP. Manganese deficiency in the media was also essential. Excessive Mn2+ effects were also seen in the IMP fermentation carried out with an adenineless mutant, of Cornynebacterium glutamicum. In M. sodonensis, R5P-like substances, 5-phosphoribose pyrophosphokinase and IMP pyrophosphorylase, were leaked out, of the cells grown in suboptimal Mn2+ levels. This excretion was inhibited by high levels of Mn2+. Such a phenomenon was not noted in A. citreus. An adenineless mutant (KY 7208) of Brevibacterium ammoniagenes was found to accumulate an appreciable amount of IMP. The chemical changes in this fermentation showed that, hypoxanthine was first produced de novo, excreted, and then reconverted into IMP by a salvage pathway. When hypoxanthine was added to 7208 culture, IMP yield was increased appreciably. In fact exogenous 14C-hypoxanthine was incorporated into 14C-IMP. Subsequent experiments showed that indeed Br. ammoniagenes ATCC 6872, a parent culture of KY 7208, was able to produce IMP, GMP, and AMP, in good yield from hypoxanthine, guanine, and adenine, respectively.  相似文献   

17.
Eight uracil-dependent mutants ofBrevibacterium ammoniagenes CCEB 364 and three mutants ofCorynebacterium sp. 9366 were checked for the production of precursors of nucleic acids. Four of the strains liberated into the medium a substantial amount of orotic acid. The production of orotic acid by a mutant ofBrevibacterium ammoniagenes (1043) was examined on mineral media containing varying amounts of glucose in the presence of uracil. The optimum concentration of glucose for the production of orotic acid was found to be 5–8%. On media to which natural substrates were added the orotic acid production increased substantially. The maximum production (6.5 g orotic acid/liter) was reached in a medium containing 0.5% yeast extract and 5% glucose; addition of uracil to this medium had no effect on the production. The maximum rate of production occurred between 24 and 72 h of fermentation. After this period the concentration of orotic acid in the medium decreases.  相似文献   

18.
New derivatives were obtained from Cr(urea)6Cl3· 3H2O in an ethyl acetate medium of chromium(III) with uracil, uridine, 5′UMP, 5′CMP, 5′GMP and 5′IMP. The new derivatives were characterized by elemental analysis, electronic and infrared spectroscopy and thermal analysis. These derivatives proved to be outer sphere complexes, in which the nucleotide, the nucleoside or the base interacts with the starting complex through intramolecular hydrogen bonding.Cr(XMP)(OH)·3H2O (XMP: 5′UMP, 5′CMP, 5′GMP and 5′IMP) complexes were obtained by hydrolysis of the above derivatives of the nucleotides. In these reactions there is a total substitution of the urea molecules. The derivatives obtained by hydrolysis were characterized in solid state by electronic and infrared spectroscopy. These results provide more insight into the biological role of chromium.  相似文献   

19.
Xanthosine 5′-phosphate (XMP)-amidotransferase catalyzes the formation of guanosine 5′-phosphate (GMP) by aminating XMP with either the amide group of glutamine (amidotransferase) or ammonia (aminase). The glutamine-supported activity of the purified enzyme from Escherichia coli has been studied, and its properties have been compared with those of other amidotransferases. The following results have been obtained. (i) The glutamine analog, 6-diazo-5-oxo-l-norleucine (DON), irreversibly inhibits the amidotransferase activity. A maximal rate of inhibition by DON is achieved in the presence of XMP, ATP, and Mg2+ with a pseudo-first-order rate constant of 0.276 min?1. (ii) The total number of sulfhydryl groups is approximately 22 per dimer (126,000 Mr). In the absence of substrates, about 8 sulfhydryl groups per dimer are titratable with 5,5-dithiobis(2-nitrobenzoic acid) (DTNB), and in the presence of XMP, ATP, and Mg2+ an additional 6 cysteine residues per dimer become exposed. When the amidotransferase activity is inactivated by DON, only 8 sulfhydryl groups are titratable. DTNB, p-chloromercuribenzoate, and bromopyruvate all selectively inactivate the amidotransferase activity. These results are consistent with the hypothesis that cysteine residues which are exposed by the substrates are involved in the amidotransferase activity. (iii) The purified XMP amidotransferase contains a glutaminase activity which can be measured in the absence of GMP formation. The glutaminase activity requires XMP, Mg2+, and either psicofuranine, an analog of adenosine, or inorganic pyrophosphate (PPi) and is inhibited by p-chloromercuribenzoate and DON. Maximal stimulation is observed with 100 μm psicofuranine or PPi, and there is no further stimulation in the presence of both effectors. The apparent Km is 31 μm with PPi and 13 μm with psicofuranine; the V for glutamine hydrolysis is about 60% of the rate of the amidotransferase activity. The cooperative interactions between the binding of PPi and psicofuranine have been confirmed. In the presence of 2.5 μm psicofuranine the Km for PPi is reduced 20-fold, but the maximal velocity is unchanged. Similarly, the apparent Km for psicofuranine is reduced by low concentrations (10 μm) of PPi. The “uncoupling” of the hydrolysis of glutamine from the amination of XMP is the basis for the reported inhibitory effects of psicofuranine and PPi on the amidotransferase activity. (iv) Tris buffer selectively inhibits the XMP-amidotransferase activity by inhibiting the glutaminase activity. This inhibition is time dependent and reversible and may explain the previous reports on the inability of this enzyme to use glutamine as a substrate.  相似文献   

20.
During the cource of the investigation of ribotidation of purine and pyrimidine bases by Brevibacterium ammoniagenes ATCC 6872, it was found that a large amount of uridine 5′-monophosphate (UMP) was accumulated in the culture broth when the organism was incubated in a medium containing uracil or orotic acid. The yields of UMP were 83% (4.8 mg/ml) from uracil and 100% (4.3 mg/ml) from orotic acid when each substrate was added at the concentration of 2 mg/ml.

Addition of 6-azauracil or 5-hydroxyuracil to the culture of the organism during cultivation led to the accumulation of both orotidine 5′-monophosphate (OMP) and UMP. The accumulation of OMP seemed to be due to the inhibition of OMP decarboxylase (E. C. 4.1.1.23) by the ribotide formed from each base. The OMP accumulation was enhanced by the addition of orotic acid in addition to 6-azauracil. When 6-azauracil was added to the medium before inoculation, UMP was predominantly accumulated, and when it was added after one day incubation, OMP was predominantly accumulated. A largest accumulation (3.6 mg/ml) of OMP was obtained when 6-azauracil was added on the 1st day and orotic acid was added on the 3rd day.

UMP and OMP accumulated in the medium were isolated from the cultured broth and identified by usual methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号