首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Chemoreception is a key feature in selection of host plants by insects. We performed a preliminary functional characterization of olfactory proteins isolated from an antennal cDNA library of Monochamus alternatus. We identified four olfactory genes, including two encoding putative classic odorant‐binding proteins (OBPs) and two encoding minus‐C OBPs. We expressed two of the four OBPs, MaltOBP3 and MaltOBP5, in a bacterial system and assessed their ligand specificity by measuring the competitive binding of fluorescent probe, N‐phenyl‐1‐naph‐thylamine, in the presence of 17 volatile beetle‐ or host‐plant‐related ligands. The results indicated that although MaltOBP3 and MaltOBP5 bound a distinctly different group of competitors, both had relatively high binding affinities (Ki < 20 μm ) for certain compounds. The differences in their binding affinities towards host‐plant ligands suggest the roles of MaltOBP3 and MaltOBP5 in host‐plant selection.  相似文献   

2.
Abstract

The preparation of 2-deoxy-2-amino-N-(5-dimethylamino-l-naphthalene sulfonyl)-glucose (III) designed as a fluorescent competitive inhibitor of hexokinase was achieved after reacting 2-deoxy-2-aminoglucose and l-dimethylamino-5-naphthalene sulfonyl chloride. (III) showed fluorescence excitation and emission maxima in water at 330 and 507 nm, respectively. (III) was found to competitively inhibit hexokinase and a value of Ki = 3.0 × 10?3 M was obtained for the system hexokinase B + Mg. ATP + glucose at pH 8.4.  相似文献   

3.
Odorant‐binding proteins (OBPs) are believed to play an important role in olfactory recognition. In this study, expression pattern and fluorescence binding characteristics of MaltOBP13 from the Japanese pine sawyer beetle, Monochamus alternatus Hope, were investigated via qPCR analysis of MaltOBP13 mRNA level and binding assay of MaltOBP13 and ligands. qPCR monitoring indicated MaltOBP13 mainly expressed in newly emerged males, particularly highly expressed in the last abdominal segment of males, and the expression level was significantly higher in 13‐day‐old mated adults than those of other stages. To further understand the function of the MaltOBP13 protein in odorant reception, the binding affinity of recombinant MaltOBP13 to ligands was tested by fluorescence binding assays with N‐phenyl‐1‐naphthylamine as a fluorescent probe. The results of this assay indicated that MaltOBP13 exhibited a high binding affinity for pine volatiles and binding capacity was higher in acidic conditions than in neutral environment, indicating a possible role in finding host plants.  相似文献   

4.
The binding of the fluorescent alkylamines, N-(2-aminoethyl)-5-dimethylamino-1-naphthalene sulfonamide, N-(5-aminopentyl)-5-dimethylamino-1-naphthalene sulfonamide (dansyl cadaverine) and N-(10-aminodecyl)-5-dimethylamino-1-napthalene sulfonamide with phospholipid and phospholipid-deoxycholate micelles, has been shown to increase with the length of the alkyl spacer chain. The probes bind more effectively to micelles containing unsaturated phospholipids and do not interact strongly with bile salt solutions at low concentrations. Cholesterol incorporation into mixed micelles results in a quenching of probe fluorescence due to displacement of probe molecules. The enhanced rigidity of the mixed micelles on solubilizing cholesterol is established by a decrease in pyrene excimer fluorescence and by the less effective perturbation of the micellar structure by 1-anilino-8-naphthalene sulfonate. The anionic probe 1-anilino-8-naphthalene sulfonate is also displaced from the mixed micelles when cholesterol is incorporated, suggesting a dominant role for packing and hydrophobic effects in binding both positively and negatively charged probes.  相似文献   

5.
The preparation of 2-deoxy-2-amino-N-(5-dimethylamino-1-naphthalene sulfonyl)-glucose (III) designed as a fluorescent competitive inhibitor of hexokinase was achieved after reacting 2-deoxy-2-aminoglucose and 1-dimethylamino-5-naphthalene sulfonyl chloride. (III) showed fluorescence excitation and emission maxima in water at 330 and 507 nm, respectively. (III) was found to competitively inhibit hexokinase and a value of Ki = 3.0 x 10(-3)M was obtained for the system hexokinase B + Mg.ATP + glucose at pH 8.4.  相似文献   

6.
A detailed study of the trypsin surface has been carried out to gain insight into its biological functions and interactions which helped to determine the binding specificity. Twenty-four cavity pockets were automatically identified on trypsin from PDB file entry 1AUJ using CASTp (Computed Atlas of Surface Topography of proteins). Molecular docking was exploited as an efficient in silico screening tool for studying protein–ligand interactions. A systematic docking study using Autodock 3.05 has been performed on the five largest binding pockets in trypsin. A set of ten putative chemical ligands was used to dock into selected binding pockets. Docking of ligands into the five largest pockets in trypsin showed that 1,10-phenanthroline and ethanolamine preferentially bound at pocket 24 and benzamidine at pocket 22. Thermodynamically, we also found that ethanol, propanol, propandiol and phosphoethanolamine preferentially bound at pocket 21 whereas p-aminobenzamidine, phenylacetic acid and phenylalanine interacted mainly at pocket 20 based on their lowest interaction free energy.  相似文献   

7.
Summary The reagent sym-triazine trichloride is used as a bifunctional reagent to generate RNA-protein cross-links within intact ribosomal subunits from E. coli. The reaction takes place in a stepwise manner, involving substitution of one chlorine atom at 12° and pH 8, and substitution of the second at 40° and pH 6. The cross-linked proteins are analysed by two-dimensional electrophoresis, and the existence of a stable cross-linkage is demonstrated by isolating protein-oligonucleotide complexes from 32P-labelled subunits. The proteins cross-linked are S3 and S4 in the 30S subunit, and L2 in the large subunit, together with smaller amounts of other proteins. The reagent should prove useful in topographical studies of the E. coli ribosome as it is a rigid molecule and generates very short cross-links.  相似文献   

8.
At fertilization, the sperm triggers intracellular calcium oscillations, which are pivotal to oocyte activation and development. A working hypothesis for the interaction between the sperm and the oocyte is that disintegrin ligands on the inner acrosomal membrane of the sperm bind to integrin receptors on the oocyte vitelline membrane. The aim of these experiments was to find and identify the sperm protein ligands involved in bovine sperm-oocyte interactions. In situ fluorescent labeling of proteins and 2-D gel electrophoresis were used to identify specific sperm membrane proteins that interact with proteins in the oocyte vitelline membrane. Sperm were labeled with a fluorescent dye and used to fertilize zona-free oocytes. Sperm-oocyte complexes were either lysed immediately, or following covalent cross-linking of proteins with dibromobimane. The cross-linking reagent serves the critical function of covalently linking proteins together so that they will remain as a unit through lysis of the cells and 2-D gel analysis, and which can be subsequently identified by mass spectrometry. Lysates were electrophoretically run on the same 2-D gel. The comparison of uncross-linked and cross-linked protein spots revealed that some proteins shifted position based on binding. These spots were picked and proteins identified by mass spectrometry. These results provide a list of specific sperm proteins that interact with oocyte membrane proteins and establish a group of candidate ligands, one or more of which may be responsible for induction of outside-in signaling resulting in oocyte activation and fusion of the gametes.  相似文献   

9.
A novel linker containing biotin, alkyne and benzophenone groups (1) was synthesized to identify target proteins using a small molecule probe. This small molecule probe contains an azide group (azide probe) that reacts with an alkyne in 1 via an azide–alkyne Huisgen cycloaddition. Cross-linking of benzophenone to the target protein formed a covalently bound complex consisting of the azide probe and the target protein via 1. The biotin was utilized via biotin–avidin binding to identify the cross-linked complex. To evaluate the effectiveness of 1, it was applied in a model system using an allene oxide synthase (AOS) from the model moss Physcomitrella patens (PpAOS1) and an AOS inhibitor that contained azide group (3). The cross-linked complex consisting of PpAOS1, 1 and 3 was resolved via SDS–PAGE and visualized using a chemiluminescent system. The method that was developed in this study enables the effective identification of target proteins.  相似文献   

10.
We describe a method for labeling chromosomal proteins with an amino-group-specific fluorescent reagent, fluorescamine. Chromosomes thus labeled appear either as uniformly fluorescent or as haloes in structure depending on the proteins remaining after treatment with acid-alcohol fixation. Using fluorescamine as a probe, we demonstrate that there is a substantial loss of labeled proteins during the chromosomal preparation and also during the trypsin treatment used in the banding of chromosomes.  相似文献   

11.
An investigation into the protein topography of tomato plasma membrane proteins was undertaken. Plasma membrane was isolated by phase partitioning to expose the extracellular leaflet, and by coating the protoplasts with silica microbeads to expose the cytosolic surface. Marker enzyme analysis indicated that both methods yielded relatively pure plasma membrane. Orientation of these plasma membrane fractions was established by investigating the latency of H+-ATPase activity. Triton X-100 stimulated H+-ATPase activity by 6-fold in the phase-partitioned plasma membrane fraction but did not stimulate this enzyme in the silica microbead-isolated plasma membrane. The impermeant photoactivable probes, 3-azido-(2,7)-naphthalene disulfonate and 5-azido-1-naphthalene monosulfonate, were used to probe the hydrophilic and hydrophobic regions of the plasma membrane, respectively. Using 5-azido-1-naphthalene monosulfonate, six proteins were labeled from the cytosolic leaflet of the plasma membrane and five proteins were labeled from the extracellular leaflet. Only two proteins were labeled by 3-azido-(2,7)-naphthalene disulfonate, and these were from the cytosolic-facing leaflet. The results indicate that these photoactive probes can be used in conjunction with aqueous two-phase partitioning and silica microbeads for transmembrane mapping of plasma membrane proteins.  相似文献   

12.
Binding of ibuprofen (IB) enantiomers to human serum albumin (HSA) was studied using a chiral fluorescent derivatizing reagent, which enabled the measurement of IB enantiomers at a concentration as low as 5 × 10−8 M. Scatchard analyses revealed that there were two classes of binding sites for both enantiomers. For the high affinity site, the number of the binding sites was one for both enantiomers, and the binding constant of R-IB was 2.3-fold greater than that of S-IB. The difference in the affinity at the high affinity site may result in the stereoselective binding of IB enantiomers at therapeutic concentrations. It was confirmed that the high affinity site of IB enantiomers is Site II (diazepam binding site) by using site marker ligands. Also, significant enantiomer-enantiomer interactions were observed in the binding. The binding data were quantitatively analyzed and a binding model with an assumption of competitive interactions only at the high affinity site simulated the binding characteristics of IB enantiomers fairly well. Chirality 9:643–649, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Differential interactions of tropomyosin (TM) isoforms with actin can be important for determination of the thin filament functions. A mechanism of tropomyosin binding to actin was studied by comparing interactions of five αTM isoforms with actin modified with m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) and with fluorescein-5-isothiocyanate (FITC). MBS attachment sites were revealed with mass spectrometry methods. We found that the predominant actin fraction was cross-linked by MBS within subdomain 3. A smaller fraction of the modified actin was cross-linked within subdomain 2 and between subdomains 2 and 1. Moreover, investigated actins carried single labels in subdomains 1, 2, and 3. Such extensive modification caused a large decrease in actin affinity for skeletal and smooth muscle tropomyosins, nonmuscle TM2, and chimeric TM1b9a. In contrast, binding of nonmuscle isoform TM5a was less affected. Isoform’s affinity for actin modified in subdomain 2 by binding of FITC to Lys61 was intermediate between the affinity for native actin and MBS-modified actin except for TM5a, which bound to FITC–actin with similar affinity as to actin modified with MBS. The analysis of binding curves according to the McGhee–von Hippel model revealed that binding to an isolated site, as well as cooperativity of binding to a contiguous site, was affected by both actin modifications in a TM isoform-specific manner.  相似文献   

14.
Protein–protein interactions play central roles in physiological and pathological processes. The bases of the mechanisms of drug action are relevant to the discovery of new therapeutic targets. This work focuses on understanding the interactions in protein–protein–ligands complexes, using proteins calmodulin (CaM), human calcium/calmodulin‐dependent 3′,5′‐cyclic nucleotide phosphodiesterase 1A active human (PDE1A), and myosin light chain kinase (MLCK) and ligands αII–spectrin peptide (αII–spec), and two inhibitors of CaM (chlorpromazine (CPZ) and malbrancheamide (MBC)). The interaction was monitored with a fluorescent biosensor of CaM (hCaM M124C–mBBr). The results showed changes in the affinity of CPZ and MBC depending on the CaM–protein complex under analysis. For the Ca2+–CaM, Ca2+–CaM–PDE1A, and Ca2+–CaM–MLCK complexes, CPZ apparent dissociation constants (Kds) were 1.11, 0.28, and 0.55 μM, respectively; and for MBC Kds were 1.43, 1.10, and 0.61 μM, respectively. In competition experiments the addition of calmodulin binding peptide 1 (αII–spec) to Ca2+hCaM M124C–mBBr quenched the fluorescence (Kd = 2.55 ± 1.75 pM) and the later addition of MBC (up to 16 μM) did not affect the fluorescent signal. Instead, the additions of αII–spec to a preformed Ca2+hCaM M124C–mBBr–MBC complex modified the fluorescent signal. However, MBC was able to displace the PDE1A and MLCK from its complex with Ca2+–CaM. In addition, docking studies were performed for all complexes with both ligands showing an excellent correlation with experimental data. These experiments may help to explain why in vivo many CaM drugs target prefer only a subset of the Ca2+–CaM regulated proteins and adds to the understanding of molecular interactions between protein complexes and small ligands. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Odorant binding proteins (OBPs) transport hydrophobic odor molecules across the sensillar lymph to trigger a neuronal response. Herein, the Minus-C OBP (DhelOBP21) was characterized from Dastarcus helophoroides, the most important natural parasitic enemy insect that targets Monochamus alternatus. Homology modeling and molecular docking were conducted on the interaction between DhelOBP21 and 17 volatile molecules (including volatiles from pine bark, the larva of M. alternatus, and the faeces of the larva). The predicted three-dimensional structure showed only two disulfide bridges and a hydrophobic binding cavity with a short C-terminus. Ligand-binding experiments using N-phenylnaphthylamine (1-NPN) as a fluorescent probe showed that DhelOBP21 exhibited better binding affinities against those ligands with a molecular volume between 100 and 125 ų compared with ligands with a molecular volume between 160 and 185 ų. Molecules that are too big or too small are not conducive for binding. We mutated the amino acid residues of the binding cavity to increase either hydrophobicity or hydrophilia. Ligand-binding experiments and cyber molecular docking assays indicated that hydrophobic interactions are more significant than hydrogen-bonding interactions. Although hydrogen-bond interactions could be predicted for some binding complexes, the hydrophobic interactions had more influence on binding following hydrophobic changes that affected the cavity. The orientation of ligands affects binding by influencing hydrophobic interactions. The binding process is controlled by multiple factors. This study provides a basis to explore the ligand-binding mechanisms of Minus-C OBP.  相似文献   

16.
Proteins for therapeutic use may contain small amounts of partially misfolded monomeric precursors to postproduction aggregation. To detect these misfolded proteins in the presence of an excess of properly folded protein, fluorescent probes such as 8-anilino-1-naphthalene sulfonate (ANS) are commonly used. We investigated the possibility of using isothermal titration calorimetry (ITC) to improve the detection of this type of conformational change using hydrophobic probes. As a case study, conformational changes in human polyclonal immunoglobulin G (IgG) were monitored by measuring the enthalpies of binding of ANS using ITC. Results were compared with those using fluorescence spectroscopy. IgG heated at 63 °C was used as a model system for “damaged” IgG. Heat-treated IgG can be detected already at levels below 5% with both ITC and fluorescence. However, ITC allows a much wider molar probe-to-protein ratio to be sampled. In particular, using reverse titration experiments (allowing high probe-to-protein ratios not available to fluorescence spectroscopy), an increase in the number of binding sites with a Kd > 10 mM was observed for heat-treated IgG, reflecting subtle changes in structure. Both ITC and fluorescence spectroscopy showed low background signals for native IgG. The nature of the background signals was not clear from the fluorescence measurements. However, further analysis of the ITC background signals shows that a fraction (8%) binds ANS with a dissociation constant of approximately 0.2 mM. Measurements were also carried out at pH 4.5. Precipitation of IgG was induced by ANS at concentrations above 0.5 mM, interfering with the ITC measurements. Instead, with the nonfluorescent probes 4-amino-1-naphthalene sulfonate and 1-naphthalene sulfonate, no precipitation is observed. These probes yield differences in the enthalpies of binding to heated and nonheated IgG similar to ANS. The data illustrate that ITC with low-molecular-weight probes is a versatile tool to monitor conformational changes in proteins with a wider application potential than fluorescence measurements.  相似文献   

17.
R-Phycoerythrin (absorption spectrum 280; 495;sh 535, 564 nm with A564/A280 ratio of 5.3) was purified from the red macroalgaCorallina officinalis. The relative molecular mass determined from PAGE was 240 000. SDS-PAGE demonstrated two major subunits ofM r 20 000 and 21 000, respectively, and a minor subunit ofM r 30 000. A fucospyranosyl phenylisothiocyanate conjugate was prepared and this novel fluorescent affinity reagent used in conjunction with a flow cytometer to probe fucose-binding sites on blood mononuclear cells. By varying the sugar and using other phycobiliproteins the approach has the potential for simultaneously monitoring different sugar binding sites on subsets of cells within populations.  相似文献   

18.
Oligoribonucleotide derivatives containing the photoactivated arylazidogroup at 5'-end of the oligonucleotide fragment [2-(N-2,4-dinitro-5-azidophenyl) aminoethyl] phosphamides of the oligoribonucleotides, azido-NH (CH2)2NHpN (pN) n-1, were prepared. It was demonstrated that azido-NH(CH2)2NHpA(pA)4 and azido-NH (CH2)2NHpU (pU)3 stimulate the binding of the codonspecific aminoacyl-tRNA with ribosome. After irradiation of the ternary complex ribosome-azido-NH (CH2)2NHpU (pU) n-1 X tRNA with UV-light (lambda greater than 350 nm) covalent binding of the reagent to ribosome occurs. Up to 10% of the reagent, bound in the ternary complex with ribosome, is cross-linked with the ribosomal proteins of 30S and 50S subunits. The ribosomal RNA are not modified by azido-NH (CH2)2NHpU (pU) n-1. The proteins of 30S and 50S subunits, modified with azido-NH (CH2)2NHpU (pU) n-1 with n = 4,7 and 8, were identified. It is shown that proteins of 30S subunits S3, S4, S9, S11, S12, S14, S17, S19, S20 undergo modification. The proteins of 50S subunits L2, L13, L16, L27, L32, L33 are modified. The set of the modified proteins essentially depends on the length of the oligonucleotide part of the reagent and on occupancy of ribosome A-site by a molecule of tRNA.  相似文献   

19.
The chemical modification of phosphoenolpyruvate carboxylase purified from Crassula argentea leaves was studied using the fluorescence of the extrinsic probe 8-anilino-1-naphalenesulfonate. The effects of ligands on kinetic parameters of phosphoenolpyruvate carboxylase activity, and its response to pH and metal cations, were associated with the binding of the ligands to the enzyme as measured by fluorescence. Binding of the ligands phosphoenolpyruvate, malate, and glucose-6-phosphate revealed by fluorescence measurements corresponds to competitive phenomena observed in kinetic studies. The fluorescence measurements also suggest the involvement of specific amino acids in the binding of a given ligand. Arginyl residues modified by 2,3-butanedione appear to be directly involved in the binding of phosphoenolpyruvate and malate to the active and the inhibition sites, respectively. A histidyl residue was involved in the binding of malate, accounting for the lack of inhibition by malate in kinetic studies of the enzyme treated with diethylpyrocarbonate. Although activity was lost, there was no decrease in the ability of the treated enzyme to bind phosphoenolpyruvate, suggesting that additional histidyl residues are essential for activity although not directly involved in the binding of phosphoenolpyruvate. The lysine reagent trinitrobenzenesulfonate caused a loss of activity and a reduction in malate inhibition and glucose-6-phosphate activation, but these modifications were not related to changes in the ability of the enzyme to bind any of the three ligands. This suggests that lysine residues were not directly involved in the binding of these ligands.  相似文献   

20.
Abstract

The fluorescent 2-aminopurine probe (2-AP) incorporated into the loop of 23-mer RNA hairpin of HIV-1 genome dimerization initiation site (DIS) was used for discrimination of specific and unspecific binding of paromomycin and spermine to the kissing loop dimer (KD) formed in solution. While both ligands stabilized the KD RNA structure, only paromomycin binding resulted in significant increase of 2-AP fluorescence. These observations suggest that the 2-AP fluorescent RNA construct might be useful for selecting ligands specifically binding the HIV-1 kissing loop RNA dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号