首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for preparing NMN (nicotinamide mononucleotide) by the use of yeast 5′-nucleotidase is presented. After hydrolysis of NAD into NMN, adenosine and Pi by yeast 5′-nucleotidase which is a single protein having nucleotide pyrophosphatase activity, NMN in the hydrolysate of NAD was purified on active carbon and subsequently on Amberlite IRC-50.

In the typical experiment, 0.74 g of NMN (88% purity) was obtained from 2g of NAD preparation, giving 76% recovery on the basis of the theoretical value.

The NMN preparation was identified as NMN by IR spectra, UV spectra, paper chromatography, and also by component analysis.  相似文献   

2.
Some properties and kinetics of yeast nucleotide pyrophosphatase were studied in comparison with those of 5′-nucleotidase.

It was concluded that the two enzyme activities exist in a single protein molecule, though their active sites are not completely identical.  相似文献   

3.
Undersulfation observed in the glycosaminoglycans synthesized by cultured skin fibroblasts from a Lowe's syndrome patient[Fukui, S. etal. (1981) J. Biol. Chem. 256, 10313–10318] was found to be caused by elevated degradation of 3′-phosphoadenosine 5′-phosphosulfate (PAPS). The enzyme involved in this degradation was then identified as an enzyme of nucleotide pyrophosphatase (EC 3.6.1.9) nature, cleaving the phosphosulfate linkage. The specific activities were 8 – 24 (mU/mg protein) in patients' fibroblasts, in contrast to 3 in normal and 5 – 14 in heterozygote cells. A possibility is discussed that the elevation of nucleotide pyrophosphatase activity is the primary genetic defect in Lowe's syndrome.  相似文献   

4.
Rat liver microsomes showed very active uridine diphosphate-galactose pyrophosphatase activity leading to the hydrolysis of uridine diphosphate-galactose into galactose1-phosphate and finally into galactose. The activity was observed in presence of buffers with wide ranges of pH. Different concentrations of divalent cations, such as Mn2+, Mg2+, and Ca2+ had no significant effect on the enzyme activity. A number of nucleotides and their derivatives inhibited the pyrophosphatase activity. Of these, different concentrations of uridine monophosphate, cytidine 5′-phosphate and cytidine 5′-diphosphate have slight or no effect; cytidine 5′-triphosphate, adenosine 5′-triphosphate, guanosine 5′-triphosphate, cytidine 5′-diphosphate-glucose and guanosine 5′-diphosphate-glucose showed strong inhibitory effect whereas cytidine 5′-diphosphate-choline showed a moderate effect on the pyrophosphatase. All these nucleotides also showed variable stimulatory effects on uridine diphosphate-galactose:glycoprotein galactosyltransferase activity in the microsomes which could be partly related to their inhibitory effects on uridine diphosphate-galactose pyrophosphatase. Among them uridine monophosphate, cytidine 5′-phosphate, and cytidine 5′-diphosphate stimulated galactosyltransferase activity without showing appreciable inhibition of pyrophosphatase, cytidine 5′-diphosphate-choline, although did not inhibit pyrophosphatase as effectively as cytidine 5′-triphosphate, guanosine 5′-triphosphate, adenosine 5′-triphosphate, cytidine 5′-diphosphate-glucose, and guanosine 5′-diphosphate-glucose but stimulated galactosyltransferase activity as well as those. The fact that cytidine 5′-diphosphate-choline stimulated galactosyltransferase more effectively than cytidine 5′-phosphate, cytidine 5′-diphosphate, and cytidine 5′-triphosphate suggested an additional role of the choline moiety in the system. It has been also shown that cytidine 5′-diphosphate-choline can affect the saturation of galactosyltransferase enzyme at a much lower concentration of uridine diphosphate-galactose. Most of the pyrophosphatase and galactosyltransferase activities were solubilized by deoxycholate and the membrane pellets remaining after solubilization still retained some galactosyltransferase activity which was stimulated by cytidine 5′-diphosphate-choline. In different membrane fractions a concerted effect of both uridine diphosphate-galactose pyrophosphatase and glycoprotein:galactosyltransferase enzymes on the substrate uridine diphosphate-galactose is indicated and their eventual controlling effects on the glycopolymer synthesis in vitro or in vivo need careful evaluation.  相似文献   

5.
NADP and NADP analog were phosphorylated to NAD diphosphate and NADP analog phosphate, respectively, by an enzyme preparation of Proteus mirabilis (IFO 3849). The degradation products from NAD-diphosphate and NADP analog phosphate by the snake venom nucleotide pyrophosphatase were identical with nicotinamide riboside diphosphate and adenosine 2′(3′), 5′-diphosphate.  相似文献   

6.
Alkaline phosphatase prepared from mammalian cell cultures was found to have alkaline inorganic pyrophosphatase activity. Both of these activities appear to be associated with a single protein, as demonstrated by: (1) concomitant purification of alkaline phosphatase and alkaline inorganic pyrophosphatase; (2) proportional precipitation of alkaline phosphatase and inorganic pyrophosphatase activities by titrating constant amounts of an enzyme preparation with increasing concentration of antibody; (3) immune electrophoresis, which showed that precipitin bands that have alkaline phosphatase activity also have pyrophosphatase activity; (4) inhibition of pyrophosphatase activity by cysteine, an inhibitor of alkaline phosphatase activity; (5) similar subcellular localization of the two enzyme activities as demonstrated by histochemical methods; (6) hormonal and substrate induction of alkaline phosphatase activity in mammalian cell cultures, which produced a nearly parallel rise in inorganic pyrophosphatase activity.  相似文献   

7.
Biochemical properties of nucleotide pyrophosphatase/phosphodiesterase (NPP) in rat serum have been described by assessing its nucleotide phosphodiesterase activity, using p-nitrophenyl-5′-thymidine monophosphate (p-Nph-5′-TMP) as a substrate. It was demonstrated that NPP activity shares some typical characteristics described for other soluble NPP, such as divalent cation dependence, strong alkaline pH optimum (pH 10.5), inhibition by glycosaminoglycans, and K m for p-Nph-5′-TMP hydrolysis of 61.8 ± 5.2 μM. In order to characterize the relation between phosphodiesterase and pyrophosphatase activities of NPP, we have analyzed the effects of different natural nucleotides and nucleotide analogs. ATP, ADP, and AMP competitively inhibited p-Nph-5′-TMP hydrolysis with K i values ranging 13–43 μM. Nucleotide analogs, α,β-metATP, BzATP, 2-MeSATP, and dialATP behaved as competitive inhibitors, whereas α,β-metADP induced mixed inhibition, with K i ranging from 2 to 20 μM. Chromatographic analysis revealed that α,β-metATP, BzATP, and 2-MeSATP were catalytically degraded in the serum, whereas dialATP and α,β-metADP resisted hydrolysis, implying that the former act as substrates and the latter as true competitive inhibitors of serum NPP activity. Since NPP activity is involved in generation, breakdown, and recycling of extracellular adenine nucleotides in the vascular compartment, the results suggest that both hydrolyzable and non-hydrolyzable nucleotide analogs could alter the amplitude and direction of ATP actions and could have potential therapeutic application.  相似文献   

8.
An activity that inhibited both glutamine synthetase (GS) and nitrate reductase (NR) was highly purified from cauliflower (Brassica oleracea var. botrytis) extracts. The final preparation contained an acyl-CoA oxidase and a second protein of the plant nucleotide pyrophosphatase family. This preparation hydrolysed NADH, ATP and FAD to generate AMP and was inhibited by fluoride, Cu2+, Zn2+ and Ni2+. The purified fraction had no effect on the activity of NR when reduced methylviologen was used as electron donor instead of NADH; and inhibited the oxidation of NADH by both spinach NR and an Escherichia coli extract in a time-dependent manner. The apparent inhibition of GS and NR and the ability of ATP and AMP to relieve the inhibition of NR can therefore be explained by hydrolysis of nucleotide substrates by the nucleotide pyrophosphatase. We have no evidence that the nucleotide pyrophosphatase is a specific physiological regulator of NR and GS, but suggest that nucleotide pyrophosphatase activity may underlie some confusion in the literature about the effects of nucleotides and protein factors on NR and GS in vitro.  相似文献   

9.
The procedure for isolation of nucleotide pyrophosphatase (E.C. 3.6.1.9.) from potato has been modified to yield an endonuclease-free preparation purified 2300-fold. The enzyme was used for specific cleavage of pyrophosphate linkages in the 5'-terminal cap (m7GpppN) of several eukaryotic messenger RNAs. Enzymatic removal of 5'-terminal pm7G from reovirus, rabbit globin and Artemia salina mRNAs resulted in an almost complete loss (greater than 80%) of their template activities in a cell-free protein synthesizing system from wheat germ. Incubation with nucleotide pyrophosphatase did not decrease the translation of phage f2 RNA in an Escherichia coli cell-free system.  相似文献   

10.
The nucleotide-sugar pyrophosphatase activity of rat small intestine was studied using GDP-[14C]Man as substrate. The highest specific activities in the gastrointestinal tract were in the proximal small intestine, with a preferential localization in villus tip cells. Purified brush-border membranes were highly enriched in nucleotide-sugar pyrophosphatase. After the enzyme was solubilized with detergent and purified 180-fold, it hydrolyzed FAD and p-nitrophenyl-5'-thymidylate, as well as nucleotide sugars. That the same enzyme, a 5'-nucleotide phosphodiesterase, is responsible for nucleotide-sugar pyrophosphatase, phosphodiesterase I, and FAD pyrophosphatase activities is indicated by: co-migration in electrophoresis, parallel thermal inactivation, competitive inhibition studies, and similar regional, cellular, and subcellular localizations.  相似文献   

11.
A rapid and efficient method is described for the synthesis of [6-14C]orotidine 5′-monophosphate from radioactive orotic acid using purified yeast orotate phosphoribosyltransferase and inorganic pyrophosphatase. Radioactive orotidine 5′-monophosphate is purified by ion exchange chromatography and employed in small scale assays of Drosophila orotate phosphoribosyltransferase and orotldylate decarboxylase in which both enzyme activities are simultaneously measured in single reaction mixtures. Radioactive substrate and products are separated for counting using DEAE-cellulose paper chromatograms developed in one or two solvents.  相似文献   

12.
It was found that CDP-choline was formed with good yield from 5′-CMP and choline phosphate or choline chloride by yeast cells. The effects of pyrophosphate (PPi) on the formation of UDPG, GDPM and CDP-choline from respective nucleoside monophosphate by yeast cells were studied. By the addition of PPi to the reaction mixture, the phosphorylation of G-6-P from glucose was inhibited and then the phosphorylation of nucleoside monophosphates was restrained. Such inhibition was reversed by the decomposition of PPi by inorganic pyrophosphatase of yeast cells. The addition of PPi after the formation of nucleotide derivatives caused the accumulation of UTP and GTP and molar yields from nucleotide as substrate was about 80%. But that of CTP was a little in the reaction system of CDP-choline synthesis. Further, this method seems to be suitable for the accumulation of sugar-1-phosphates.  相似文献   

13.
1. Isolated mouse spleen lymphocytes hydrolysed UDP-galactose added to the medium. Nucleotide pyrophosphatase activity that accounted for this hydrolysis was enriched to a similar extent as alkaline phosphodiesterase and 5'-nucleotidase in a lymphocyte plasma-membrane fraction. 2. The cell surfaces of mouse spleen and thymus lymphocytes were iodinated with 125I by using the lactoperoxidase-catalysis method. Detergent extracts of the cells were mixed with a purified anti-(mouse liver plasma-membrane nucleotide pyrophosphatase) antiserum and the immunoprecipitates analysed by polyacrylamide-gel electrophoresis. Only one major radioactive component, similar in size (apparent mol.wt 110000-130000) to the liver enzyme, was observed. 3. Electrophoresis of an iodinated spleen plasma-membrane fraction indicated peaks of radioactivity, including one of apparent mol.wt 110000-130000. 4. When detergent extracts of spleen lymphocytes were passed through a Sepharose-bead column containing covalently attached anti-(nucleotide pyrophosphatase) antiserum, the nucleotide pyrophosphatase activity was retained by the beads, whereas protein and leucine naphthylamidase activity were eluted. 5. The results indicate that nucleotide pyrophosphatase and alkaline phosphodiesterase activities are due to the location of the same or similar enzymes at the outer aspect of the lymphocyte plasma membrane. Some possible functions of enzymes at this location are discussed.  相似文献   

14.
Antiserum against mouse liver plasma membranes was used to investigate the properties and distribution of the surface membrane enzyme 5′ nucleotidase.The antiserum inhibited 5′ nucleotidase but had no effect on alkaline phosphodiesterase, nucleotide pyrophosphatase, or insulin-binding activity.5′ Nucleotidase was purified from mouse liver plasma membranes and the purified enzyme was shown to be inhibited by the antiserum. The membrane-bound and the purified enzyme were both inhibited in a noncompetitive manner.The reaction of the antiserum with 5′ nucleotidase activity of mouse liver plasma membrane “light” and “heavy” subfractions, and of rat liver and pig lymphocyte surface-membrane fractions was investigated. In each case the enzyme was inhibited by the antiserum.Since a protein must be partially exposed on the membrane surface in order to react with its antibody, the results are discussed in terms of the disposition of 5′ nucleotidase within the membrane.  相似文献   

15.
NADP was enzymatically synthesized from NAD and p-nitrophenyl phosphate or nucleoside monophosphate with the enzyme preparation of Proteus mirabilis (IFO 3849). In this phosphotransferring reaction, ATP did not serve as phosphoryl donor.

In addition to NADP, an unidentified substance (Compound I) showing fluorescence with methyl ethyl ketone and having no coenzyme activity to glutamic dehydrogenase was synthesized. The yield of NADP was usually below 30 per cent of Compound I.

NADP was isolated from the reaction mixture and its coenzyme activity to some dehydrogenases was demonstrated.

A new derivative of NAD (Compound I) synthesized from NAD and p-nitrophenyl phosphate by the enzyme preparation of Proteus mirabilis (IFO 3849), was isolated from the reaction mixture.

After degradation of this compound with snake venom nucleotide pyrophosphatase, Compound III was obtained. 5′-NMN was phosphorylated to Compound IV by the same enzyme preparation of P. mirabilis. By the determination of chemical constituents and the degradation with phosphomonoesterases, Compounds III and IV were identified as nicotinamide riboside 2′(3′),5′-diphosphate, and Compound I was identified as NADP analog which was formed by phosphorylation at the 2′ or 3′ position of the nicotinamide ribose moiety, not at the 2′ position of adenosine moiety of NAD.  相似文献   

16.
An exocellular pyrophosphatase, active on the nucleotide precursors of peptidoglycans, has been found in the culture medium of Streptomyces mediterranei ME/R 17. This enzyme was separated from the DD-carboxypeptidase by batchwise adsorption on DEAE cellulose. The pyrophosphatase had no strict substrate requirements, it hydrolyzed various UDP-sugar substrates: UDP-GlcNAc, UDP-Mur NAc and UDP-MurNAc peptides, giving rise to the corresponding sugar phosphate and to UMP. The enzyme preparation also contained a 5'-nucleotidase activity and UMP was further split to give uridine. This nucleotidase activity was inhibited by potassium tetraborate. Both cytoplasmic and particulate preparations from cells of S. mediterranei also contained a pyrophosphatase activity while only the particulate fractions showed the DD-carboxypeptidase activity. The pyrophosphatase excretion was tested during the grwoth cycle. The activity of the enzyme showed a constant increase throughout the exponential growth and a stronger increase in the late exponential phase. Such a result could be correlated with a consumption of the nutrients in the culture medium, in fact a relatively poor culture medium had a strong positive effect upon the production of the exocellular pyrophosphatase.  相似文献   

17.
Modulation of nucleotide pyrophosphatase in plasmacytoma cells.   总被引:1,自引:0,他引:1  
The effect of glucocorticoid hormones on the protein responsible for both nucleotide pyrophosphatase (EC 3.6.1.9) and alkaline phosphodiesterase I (EC 3.1.4.1) activities was examined in murine MOPC 315 plasmacytoma cells. Incubation of these cells with dexamethasone resulted in parallel increases in pyrophosphatase and phosphodiesterase specific activities. The incorporation of [3H]mannose into N-linked oligosaccharide precursors was also analyzed in cells following hormone modulation. In cells treated for 36 hours or cultured continuously with dexamethasone, the resulting increase in enzyme specific activities was accompanied by a decrease in [3H]mannose incorporation, consistent with the hypothesis that in some cell types, nucleotide pyrophosphatase activity is involved in the regulation of glycoprotein synthesis.  相似文献   

18.
A general assay method for nucleotide pyrophosphorylases has been investigated. The principle of the method is based on the measurement of consumption rate of 5-phosphoribosylpyrophosphate (PRPP) during the enzyme reaction. In the method, an enzyme preparation for sample was incubated in a reaction mixture containing a purine or pyrimidine base and PRPP for a certain time, and the amounts of PRPP before and after the reaction were determined. The amount of PRPP was determined by an enzymatic method using orotidine-5′-monophosphate (5′-OMP) pyrophosphorylase and 5′-OMP decarboxylase. Nucleotide pyrophosphorylase activity corresponding to each purine or pyrimidine base was determined from the amount of PRPP consumed per unit time.

The present method is generally applicable for determining activities of any kind of nucleotide pyrophosphorylases, and does not need any tedious separation procedure in all cases. Therefore, comparing with the conventional assay methods for nucleotide pyrophosphorylase activities, this method can be said to be much simpler and reliable. As an application of the present method, activities of several nucleotide pyrophosphorylases in Micrococcus glutamicus have been determined.  相似文献   

19.
Several unique proteins accumulate in soybean (Glycine max) leaves when the developing fruits are removed. In the present study, elevated levels of nucleotide pyrophosphatase and phosphodiesterase I activities were present in leaves of defruited soybean plants. The soluble enzyme catalyzing these reactions was purified nearly 1000-fold, producing a preparation that contained a single 72-kD polypeptide. The molecular mass of the holoenzyme was approximately 560 kD, indicating that the native enzyme was likely octameric. The purified enzyme hydrolyzed nucleotide-sugars, nucleotide di- and triphosphates, thymidine monophosphate p-nitrophenol, and inorganic pyrophosphate but not nucleotide monophosphates, sugar mono- and bisphosphates, or NADH. The subunit and holoenzyme molecular masses and the preference for substrates distinguish the soybean leaf nucleotide pyrophosphatase/phosphodiesterase I from other plant nucleotide pyrophosphatase/phosphodiesterase I enzymes. Also, the N-terminal sequence of the soybean leaf enzyme exhibited no similarity to the mammalian nucleotide pyrophosphatase/phosphodiesterase I, soybean vegetative storage proteins, or other entries in the data bank. Thus, the soybean leaf nucleotide pyrophosphatase/phosphodiesterase I appears to be a heretofore undescribed protein that is physically and enzymatically distinct from nucleotide pyrophosphatase/phosphodiesterase I from other sources, as well as from other phosphohydrolytic enzymes that accumulate in soybean leaves in response to fruit removal.  相似文献   

20.
Nucleotide pyrophosphatase from yeast was inhibited by thiols, o-phenanthroline, 8-hydroxyquinoline, EDTA, and 8-hydroxyquinoline-5-sulfonic acid. The inhibition by chelating agents was time and concentration dependent. Inhibition by EDTA was decreased by complexing the EDTA with metal ions before addition to the enzyme. The effectiveness of the metal ions in preventing inhibition by EDTA paralleled the stability constants of the EDTA-metal complexes. Partial recovery of EDTA-inhibited enzyme activity was achieved with Zn2+, Co2+, Fe2+, and Mn2+. Analyses for zinc in the purified enzyme by atomic absorption spectroscopy and by titration with 8-hydroxyquinoline-5-sulfonic acid revealed the presence of approximately 1 g atom/mol of enzyme (Mr 65,000). The data indicate that yeast nucleotide pyrophosphatase is a metalloenzyme in which the zinc plays some role in activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号