共查询到20条相似文献,搜索用时 15 毫秒
1.
Anup Adhikari Sajan Shakya Shreesti Shrestha Dipa Aryal Kavi Prasad Timalsina Dipesh Dhakal Yogan Khatri Niranjan Parajuli 《Biotechnology and bioengineering》2023,120(12):3465-3492
Cytochrome P450s belong to a family of heme-binding monooxygenases, which catalyze regio- and stereospecific functionalisation of C–H, C–C, and C–N bonds, including heteroatom oxidation, oxidative C–C bond cleavages, and nitrene transfer. P450s are considered useful biocatalysts for the production of pharmaceutical products, fine chemicals, and bioremediating agents. Despite having tremendous biotechnological potential, being heme-monooxygenases, P450s require either autologous or heterologous redox partner(s) to perform chemical transformations. Randomly distributed P450s throughout a bacterial genome and devoid of particular redox partners in natural products biosynthetic gene clusters (BGCs) showed an extra challenge to reveal their pharmaceutical potential. However, continuous efforts have been made to understand their involvement in antibiotic biosynthesis and their modification, and this review focused on such BGCs. Here, particularly, we have discussed the role of P450s involved in the production of macrolides and aminocoumarin antibiotics, nonribosomal peptide (NRPSs) antibiotics, ribosomally synthesized and post-translationally modified peptide (RiPPs) antibiotics, and others. Several reactions catalyzed by P450s, as well as the role of their redox partners involved in the BGCs of various antibiotics and their derivatives, have been primarily addressed in this review, which would be useful in further exploration of P450s for the biosynthesis of new therapeutics. 相似文献
2.
We studied comparative expression and activity of cytochrome P450 family 1 (CYP1) isoforms in rat embryo cells, both primary and immortalized by Rausher leukemia virus (RLV). In RLV-infected embryonal cells compared with the initial ones the expression levels of CYP1A1 and 1B1 mRNAs and benzo[a]pyrene (BP) hydroxylase activity were higher, regardless of their treatment with the CYP1 inducer 2,3,7,8-tetrachlorodibenzo-p-dioxin. The sensitivity to BP and 7,12-dimethylbenzo[a]anthracene was higher in the cells immortalized with RLV. The expression level of mRNAs of induction-mediating proteins aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator was the same in both cell cultures tested. Higher sensitivity of cells immortalized with RLV compared with the initial embryo cells to transforming effect of BP, which was described previously, is possibly associated with elevated expression of CYP1 isoforms. 相似文献
3.
Dani Permana Takuya Kitaoka Hirofumi Ichinose 《Biotechnology and bioengineering》2023,120(7):1725-1745
Cytochrome P450s (also called CYPs or P450s) are a superfamily of heme-containing monooxygenases. They are distributed in all biological kingdoms. Most fungi have at least two P450-encoding genes, CYP51 and CYP61, which are housekeeping genes that play important roles in the synthesis of sterols. However, the kingdom fungi is an interesting source of numerous P450s. Here, we review reports on fungal P450s and their applications in the bioconversion and biosynthesis of chemicals. We highlight their history, availability, and versatility. We describe their involvement in hydroxylation, dealkylation, oxygenation, C═C epoxidation, C–C cleavage, C–C ring formation and expansion, C–C ring contraction, and uncommon reactions in bioconversion and/or biosynthesis pathways. The ability of P450s to catalyze these reactions makes them promising enzymes for many applications. Thus, we also discuss future prospects in this field. We hope that this review will stimulate further study and exploitation of fungal P450s for specific reactions and applications. 相似文献
4.
Ganoderic acid 3-hydroxy-lanosta-8,24-dien-26-oic acid (GA-HLDOA), an antitumor triterpenoid from the traditional Chinese medicinal higher fungus Ganoderma lucidum, is considered as a key precursor for biosynthesizing other ganoderic acids (GAs) with superior antitumor activities. Our previous study identified CYP5150L8 from G. lucidum as a lanosterol oxidase, and achieved heterologous biosynthesis of GA-HLDOA in Saccharomyces cerevisiae. However, low production of GA-HLDOA in either G. lucidum or heterologous host hindered its further investigation and application. In this study, we constructed a dual tunable system for balancing the expression of CYP5150L8 and a Ganoderma P450 reductase iGLCPR, and performed a comprehensive optimization of CYP5150L8 expression, iGLCPR expression, and glycerol usage. Then, we investigated the fermentation behavior of the best strain in optimized condition in flask and achieved 154.45 mg/L GA-HLDOA production, which was 10.7-fold higher compared with previous report. This study may facilitate the wide-spread application of GA-HLDOA and the discovery of unknown cytochrome P450s in downstream GAs biosynthesis. 相似文献
5.
《Bioscience, biotechnology, and biochemistry》2013,77(11):2946-2952
Pladienolides are novel 12-membered macrolides produced by Streptomyces platensis Mer-11107. They show strong antitumor activity and are a potential lead in the search for novel antitumor agents. We sequenced the 65-kb region covering the biosynthetic gene cluster, and found four polyketide synthase genes (pldAI-pldAIV) composed of 11 modules, three genes involved in post-modifications (pldB-D), and a luxR-family regulatory gene (pldR). The thioesterase domain of pldAIV was more dissimilar to that of polyketide synthase systems synthesizing 12/14-membered macrolide polyketides than to that of systems synthesizing other cyclic polyketides. The pldB gene was identified as a 6-hydroxylase belonging to a cytochrome P450 of the CYP107 family. This was clarified by a disruption experiment on pldB, in which the disruptant produced 6-dehydroxy pladienolide B. Two genes located downstream of pldB, designated pldC and pldD, are thought to be a probable genes for 7-O-acetylase and 18, 19-epoxydase respectively. 相似文献
6.
Expression analysis of the mixed function oxidase system in rat brain by the polymerase chain reaction 总被引:3,自引:0,他引:3
Anne V. Hodgson Terry B. White James W. White Henry W. Strobel 《Molecular and cellular biochemistry》1993,120(2):171-179
Metabolism of therapeutic drugs in the body by the mixed function oxidase system is an important consideration in the analysis of a drug's effectiveness. P450-dependent metabolism within the brain of a neuro-specific drug may affect the drug's course of action. To determine whether cytochrome P450 was expressed in brain, RNA was isolated from the whole brains of rats treated with a variety of known hepatic P450 inducers, including amitriptyline, imipramine, isosafrole, phenobarbital, and -naphthoflavone. The RNA was analyzed for the presence of P450 isozymes by the PCR technique. Differential expression of P450IA1, P450IIB1, P450IIB2, P450IID, and P450IIE1 was detected in the brain samples, depending on the treatment. Cytochrome P450 reductase expression was also detected in the brain samples, giving strong evidence that the brain contains a competent mixed function oxidase system under all conditions studied. (Mol Cell Biochem120: 171–179, 1993)Thesis student of the Graduate School of Biomedical Sciences, the University of Texas Health Science Center at Houston 相似文献
7.
8.
Washed cells of facultative methylotrophs which have the serine pathway showed high activities for l-methionine formation from dl-homocysteine, in the presence of methanol as methyl donor. Strain FM 518, isolated from soil and identified as a bacterium belonging to the genus Pseudomonas, showed the highest activity for l-methionine formation and was used as the parental strain for breeding the l-methionine-producing mutants. An ethionine-resistant mutant, FE 244, derived from strain FM 518, accumulated 0.8 mg/ml l-methionine in a methanol-medium under optimum conditions. 相似文献
9.
Chris A. Helliwell James A. Sullivan Ruth M. Mould John C. Gray W. James Peacock Elizabeth S. Dennis 《The Plant journal : for cell and molecular biology》2001,28(2):201-208
We have used fusions of gibberellin biosynthesis enzymes to green fluorescent protein (GFP) to determine the subcellular localization of the early steps of the pathway. Gibberellin biosynthesis from geranylgeranyl diphosphate is catalysed by enzymes of the terpene cyclase, cytochrome P450 mono-oxygenase and 2-oxoglutarate-dependent dioxygenase classes. We show that the N-terminal pre-sequences of the Arabidopsis thaliana terpene cyclases copalyl diphosphate synthase (AtCPS1) and ent-kaurene synthase (AtKS1) direct GFP to chloroplasts in transient assays following microprojectile bombardment of tobacco leaves. The AtKS1-GFP fusion is also imported by isolated pea chloroplasts. The N-terminal portion of the cytochrome P450 protein ent-kaurene oxidase (AtKO1) directs GFP to chloroplasts in tobacco leaf transient assays. Chloroplast import assays with 35S-labelled AtKO1 protein show that it is targeted to the outer face of the chloroplast envelope. The leader sequences of the two ent-kaurenoic acid oxidases (AtKAO1 and AtKAO2) from Arabidopsis direct GFP to the endoplasmic reticulum. These data suggest that the AtKO1 protein links the plastid- and endoplasmic reticulum-located steps of the gibberellin biosynthesis pathway by association with the outer envelope of the plastid. 相似文献
10.
W N Kühn-Velten 《Journal of cellular biochemistry》1990,43(2):149-159
Evidence is presented for the first time that the cytochrome P450XVII-catalysed androgen formation from progesterone (P) in rat testicular microsomal membranes represents a metabolic sequence that exhibits the ability of intrinsic regulation of intermediate transfer and product formation efficiency. Exposure of this system, which catalyses a hydroxylation and oxidative cleavage reaction sequence, to increasing P concentration results in a decreased specific retention of the putative intermediate, 17 alpha-hydroxyprogesterone (HP) in the membrane compartment, and in a decreased HP conversion to androgens in favour of increasing HP transfer into the extramembrane space. This behaviour results in a decreased ratio of product vs. intermediate formation rates, which is interpreted as a partial "uncoupling" of the normal hydroxylation and cleavage reaction sequence catalysed by P450XVII. A similar pattern can likewise be observed in isolated testicular Leydig cells after exposure to increasing P concentrations under more physiological continuous-flow conditions. Further calculations indirectly indicate that the specific retention of HP in the membrane compartment can partially be attributed to its specific association with the P450XVII during catalysis. The results strongly suggest the existence of a local "channel" that becomes more leaky and therefore less effective if loaded with high influx rates. This pattern may be related to significant but incomplete competition of exogenously entering P and endogenously formed and transiently bound HP for oxygen attack at the P450XVII active site. 相似文献
11.
Studies were performed to determine whether decreases in transport of calcium and glucose might be among the earliest changes triggered by the antigen-antibody reactions occurring on the cell surface of murine leukemia L5178Y cells after treatment with rabbit antisera. After treatment with antisera, in the absence of complement, these cells exhibited a decreased uptake of 45Ca, 2-deoxy[3H]glucose, and 3-0-methyl[3H]glucose. These changes occurred rapidly, within 2 minutes after the addition of antiserum, in contrast to the previously reported inhibitory effects of antiserum on DNA, RNA, and protein synthesis, which became demonstrable only after 4 to 8 hours. The kinetics of uptake of the radioactive substrates was biphasic, with a very rapid initial uptake followed by less rapid linear uptake. The precise mechanism of cell growth inhibition remains to be elucidated, but one of the initial effects of antiserum treatment may be a perturbation at the cell membrane such that transport of specific nutrients is decreased, resulting in the observed effects on macromolecular synthesis. 相似文献
12.
利用BactoBac杆状病毒载体表达系统将真菌细胞色素P450nor基因克隆至转移载体pFastBac1中, 得到重组质粒pFastBacP450nor, 再将其转化进入含穿梭载体Bacmid的受体菌DH10Bac中发生转座作用, 得到含P450nor基因的重组穿梭载体rBacmid pAcP450nor。分离提取重组Bacmid DNA, 并转染培养的昆虫细胞Sf9, 得到重组病毒rAcp450nor。经酶切和PCR 鉴定, 细胞色素P450nor基因正确地插入到病毒基因组的多角体蛋白基因启动子下, SDSPAGE分析证明:表达蛋白的分子量为43kD左右。Western blotting分析结果表明:有一条特定的杂交带存在, 且分子量相同(约43kD)。进一步证明了含有真菌细胞色素P450nor基因的重组表达载体和重组病毒构建成功,并在昆虫细胞Sf9中实现了高效表达, 经MTT法测定表达的细胞色素P450nor具有还原NO的生物学活性。 相似文献
13.
Metabolic engineering of monoterpene biosynthesis: two-step production of (+)-trans-isopiperitenol by tobacco 总被引:1,自引:0,他引:1
Lücker J Schwab W Franssen MC Van Der Plas LH Bouwmeester HJ Verhoeven HA 《The Plant journal : for cell and molecular biology》2004,39(1):135-145
Monoterpenoid biosynthesis in tobacco was modified by introducing two subsequent enzymatic activities targeted to different cell compartments. A limonene-3-hydroxylase (lim3h) cDNA was isolated from Mentha spicata L. 'Crispa'. This cDNA was used to re-transform a transgenic Nicotiana tabacum'Petit Havana' SR1 (tobacco) line expressing three Citrus limon L. Burm. f. (lemon) monoterpene synthases producing (+)-limonene, gamma-terpinene and (-)-beta-pinene as their main products. The targeting sequences of these synthases indicate that they are probably localized in the plastids, whereas the sequence information of the P450 hydroxylase indicates targeting to the endoplasmatic reticulum. Despite the different location of the enzymes, the introduced P450 hydroxylase proved to be functional in the transgenic plants as it hydroxylated (+)-limonene, resulting in the emission of (+)-trans-isopiperitenol. Some further modifications of the (+)-trans-isopiperitenol were also detected, resulting in the additional emission of 1,3,8-p-menthatriene, 1,5,8-p-menthatriene, p-cymene and isopiperitenone. 相似文献
14.
《Bioscience, biotechnology, and biochemistry》2013,77(8):2110-2117
Brassinolide (BL), a plant 7-oxalactone-type steroid hormone, is one of the active brassinosteroids (BRs) that regulates plant growth and development. BL is biosynthesized from castasterone by the cytochrome P450 monooxygenase, CYP85A2. We showed that a Pichia pastoris transformant that synchronously expresses Arabidopsis P450 reductase gene ATR1 and P450 gene CYP85A2 converts teasterone and typhasterol to 7-oxateasterone and 7-oxatyphasterol, respectively. Thus, CYP85A2 catalyzes the lactonization reactions of not only castasterone but also teasterone and typhasterol. The two 2-deoxy-7-oxalactone-type BRs were identified in Arabidopsis plants. Although the reversible conversion between 7-oxateasterone and 7-oxatyphasterol was observed in vivo, no conversion of 7-oxatyphasterol to BL was observed. The biological activity of 7-oxatyphasterol toward Arabidopsis hypocotyl elongation was nearly the same as that of castasterone. These results suggest that a new BR biosynthetic pathway, a BR lactonization pathway, functions in Arabidopsis and plays an important role in regulating the concentration of active BRs, even though the metabolism of 7-oxatyphasterol to BL is still unknown. 相似文献
15.
16.
Koji Uchida Naoki Enomoto Koichi Itakura Shunro Kawakishi 《Bioscience, biotechnology, and biochemistry》2013,77(12):3285-3292
Iron(II)/EDTA/ascorbate-mediated oxidative damage to specific amino acid residues (tryptophan) of serum albumin was studied. The active species generated by Fe(II)/EDTA/ascorbate preferred to react with tryptophan residues rather than histidine or other amino acids. The observation of preferential damage to tryptophan residues of the protein was fully suported by a model experiment using a tryptophan analogue. The reaction of Fe(II)/EDTA/ascorbate to the protein was significantly suppressed by mannitol and dimethysulfoxide, suggesting the participation of the hydroxyl radical generated via Fenton’s reaction. The result was supported by the hydroxyl radical assay using 2-deoxyribose. 相似文献
17.
The chemical background of the biological activities of vegetables of the Cruciferae family is considered. These vegetables
contain alkaloids of the glucobrassicin group that are decomposed by the enzyme myrosinase (thioglucosidase, EC 3.2.3.1) released
upon damage to the plant cells. This results in several indole derivatives, with ascorbigen and indole-3-carbinol predominating.
In the gastrointestinal tract, these compounds form 5H,11H-indolo[3,2-b]carbazole, a natural ligand of the aromatic hydrocarbon receptor (Ah receptor) and a functional analogue of 2,3,7,8-tetrachlorodibenzo-p-dioxin, a dangerous xenobiotic. The indolocarbazole—Ah receptor complex activates the gene of CYP1A1, an isoenzyme of cytochrome
P450-dependent monoamine oxidase, which enhances the 2-hydroxylation (inactivation) of estrogens. In its turn, the resulting
lowered level of estrogens inhibits the growth of hormone-dependent tumors or prevents their appearance. The mechanism of
xenobiotic inactivation, underlying the anticarcinogenic action of food products including vegetables of the Cruciferae family
and some homogeneous indole compounds, is similar. Some other effects of nutrient indole compounds, e.g., the inhibition of
expression of the cyclin-dependent kinase 6 (CDK6) by indole-3-carbinol that leads to the cell cycle arrest in G1 phase, are also considered. Analysis of the biological effects of the Cruciferae diet has helped start clinical studies of
indole-3-carbinol as an antitumor and anticarcinogenic remedy for patients with a high risk of tumor diseases. 相似文献
18.
Valerie M. Kramlinger Mónica Alvarado Rojas Tatsuyuki Kanamori F. Peter Guengerich 《The Journal of biological chemistry》2015,290(33):20200-20210
Morphine, first characterized in opium from the poppy Papaver somniferum, is one of the strongest known analgesics. Endogenous morphine has been identified in several mammalian cells and tissues. The synthetic pathway of morphine in the opium poppy has been elucidated. The presence of common intermediates in plants and mammals suggests that biosynthesis occurs through similar pathways (beginning with the amino acid l-tyrosine), and the pathway has been completely delineated in plants. Some of the enzymes in the mammalian pathway have been identified and characterized. Two of the latter steps in the morphine biosynthesis pathway are demethylation of thebaine at the O3- and the O6-positions, the latter of which has been difficult to demonstrate. The plant enzymes responsible for both the O3-demethylation and the O6-demethylation are members of the FeII/α-ketoglutarate-dependent dioxygenase family. Previous studies showed that human cytochrome P450 (P450) 2D6 can catalyze thebaine O3-demethylation. We report that demethylation of thebaine at the O6-position is selectively catalyzed by human P450s 3A4 and 3A5, with the latter being more efficient, and rat P450 3A2. Our results do not support O6-demethylation of thebaine by an FeII/α-ketoglutarate-dependent dioxygenase. In rat brain microsomes, O6-demethylation was inhibited by ketoconazole, but not sulfaphenazole, suggesting that P450 3A enzymes are responsible for this activity in the brain. An alternate pathway to morphine, oripavine O6-demethylation, was not detected. The major enzymatic steps in mammalian morphine synthesis have now been identified. 相似文献
19.
A cDNA encoding CYP79B1 has been isolated from Sinapis alba. CYP79B1 from S. alba shows 54% sequence identity and 73% similarity to sorghum CYP79A1 and 95% sequence identity to the Arabidopsis T42902, assigned CYP79B2. The high identity and similarity to sorghum CYP79A1, which catalyses the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of the cyanogenic glucoside dhurrin, suggests that CYP79B1 similarly catalyses the conversion of amino acid(s) to aldoxime(s) in the biosynthesis of glucosinolates. Within the highly conserved PERF and the heme-binding region of A-type cytochromes, the CYP79 family has unique substitutions that define the family-specific consensus sequences of FXP(E/D)RH and SFSTG(K/R)RGC(A/I)A, respectively. Sequence analysis of PCR products generated with CYP79B subfamily-specific primers identified CYP79B homologues in Tropaeolum majus, Carica papaya, Arabidopsis, Brassica napus and S. alba. The five glucosinolate-producing plants identified a CYP79B amino acid consensus sequence KPERHLNECSEVTLTENDLRFISFSTGKRGC. The unique substitutions in the PERF and the heme-binding domain and the high sequence identity and similarity of CYP79B1, CYP79B2 and CYP79A1, together with the isolation of CYP79B homologues in the distantly related Tropaeolaceae, Caricaceae and Brassicaceae within the Capparales order, show that the initial part of the biosynthetic pathway of glucosinolates and cyanogenic glucosides is catalysed by evolutionarily conserved cytochromes P450. This confirms that the appearance of glucosinolates in Capparales is based on a cyanogen predisposition. Identification of CYP79 homologues in glucosinolate-producing plants provides an important tool for tissue-specific regulation of the level of glucosinolates to improve nutritional value and pest resistance. 相似文献
20.
《Biotechnology and bioengineering》2018,115(9):2156-2166
Cytochrome P450 mono‐oxygenases (P450) are versatile enzymes which play essential roles in C‐source assimilation, secondary metabolism, and in degradations of endo‐ and exogenous xenobiotics. In humans, several P450 isoforms constitute the largest part of phase I metabolizing enzymes and catalyze oxidation reactions which convert lipophilic xenobiotics, including drugs, to more water soluble species. Recombinant human P450s and microorganisms are applied in the pharmaceutical industry for the synthesis of drug metabolites for pharmacokinetics and toxicity studies. Compared to the membrane‐bound eukaryotic P450s, prokaryotic ones exhibit some advantageous features, such as high stability and generally easier heterologous expression. Here, we describe a novel P450 from Streptomyces platensis DSM 40041 classified as CYP107L that efficiently converts several commercial drugs of various size and properties. This P450 was identified by screening of actinobacterial strains for amodiaquine and ritonavir metabolizing activities, followed by genome sequencing and expression of the annotated S. platensis P450s in Escherichia coli. Performance of CYP107L in biotransformations of amodiaquine, ritonavir, amitriptyline, and thioridazine resembles activities of the main human metabolizing P450s, namely CYPs 3A4, 2C8, 2C19, and 2D6. For application in the pharmaceutical industry, an E. coli whole‐cell biocatalyst expressing CYP107L was developed and evaluated for preparative amodiaquine metabolite production. 相似文献