首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptomyces species H–402 and 1829 possessing high lytic activities against cariogenic streptococci which induce dental plaque and caries, were isolated by the screening from soils and sewers. They were identified as Streptomyces griseus and Streptomyces globisporus respectively. The former strain produced lytic enzyme accompanying spore formation during the surface culture, while the latter strain revealed a high activity in the submerged culture. These enzymes had wide substrate specificity against all groups of cariogenic streptococci. The lytic enzymes may be expected as an useful medicament for the prevention of dental caries.  相似文献   

2.
About 100 soil samples were subjected to screening for microorganisms which were capable of producing lytic enzyme toward Staphylococcus aureus. A strain belonging to Streptomyces was isolated and found to produce lytic enzyme(s) noninduciblly, when grown aerobically at 37°C for 25 hr in a medium containing 7.5% soybean cake extract, 2% dextrin, 0.6% K2HPO4, 0.02% each of MgSO4·7H2O and KCl, pH 7.0. The crude enzyme preparation was active at pH values of 8.5 and 5.8 toward S. aureus, B. subtilis, L. bulgaricus and Str. faecalis but was completely inert against M. lysodeikticus, indicating the enzyme(s) to be distinguished from other bacteriolytic enzymes of Streptomyces so far reported.  相似文献   

3.
The cultural conditions for the production of thermostable lipase by a thermophilic fungus Humicola lanuginosa S-38 were investigated. The optimal cultural conditions to obtain the maximum yield of thermostable lipase with a 600-liter stainless steel fermentor were as follows: optimal medium- 2.0% soluble starch, 5.0% corn steep liquor, 0.2% K2HPO4, 0.1% MgSO4·7H2O, 0.5% CaCO3, 0.5% soybean oil, 0.005% deforming agent (Adecanol LG-109); optimal fermentation conditions- temperature 45°C; rate of agitation 300 rpm; initial pH 7.0; rate of aeration 1/1 volume per volume of medium per minute. The optimal pH of the crude lipase preparation for the hydrolysis of the polyvinyl alcohol-emulsified olive oil was 8.0 and the optimal temperature was 60°C. It retained 100% of activity with the heat treatment at 60°C for 2 hr, but at 70°C for 20 min only 35% activity retained.  相似文献   

4.
ATP: nucleotide pyrophosphotransferase-producing microorganism was isolated from soil in Osaka prefecture. The morphological and physiological characteristics of this microorganism were studied. This strain was identified and named Streptomyces adephospholyticus nov. sp.

When this strain was aerobically cultured in a fermentor at 30°C in a medium containing 2% glycerol, 4% polypepton, 0.1 % KH2PO4, 0.04% MgSO4 · 7H2O, 2 ppm FeSO4 · 7H2O and 2 ppm MnSO4 · 6Н2О at pH 7.0, ATP; nucleotide pyrophosphotransferase was produced in the culture filtrate. The highest activity was obtained after 30 to 40 hr cultivation. The maximum enzyme production was 3000 to 4000 unit per liter.  相似文献   

5.
A screening test was undertaken to isolate microorganisms that produced ascorbate oxidase. The enzyme activity was found in a culture filtrate of a fungal strain (HI-25), newly isolated from a soil sample. Based on the morphological characteristics, this isolate was identified as Acremonium sp. From the examinations of cultural conditions, optimum conditions for enzyme production were found; strain HI-25 was aerobically cultured by a jar fermenter at 25°C in a medium containing 5% glycerol, 2% defatted soybeans, 0.1% monosodium L-glutamate, 0.1% KH2PO4, 0.02% MgSO4 ·7H2O, and 0.01% KCl, pH 6.0. After cultivation, an ascorbate oxidase was purified from the culture filtrate by an ammonium sulfate fractionation, column chromatographies on DEAE-cellulose and Butyl-Toyopearl, and gel filtration twice on Sephadex G-100. The purification was 850-fold with an activity yield of 8.8%. The purified enzyme gave a single band on SDS polyacrylamide gel electrophoresis, and had a molecular weight of 80,000 by SDS polyacrylamide gel electrophoresis and 76,000 by native gel filtration. This enzyme was most active at pH 4.0, 45°C, and was most stable between pH 6.0–10.0 and at temperatures below 60°C.  相似文献   

6.
A screening test was carried out to obtain microbes which produce hog pancreatic α-amylase inhibitor and a new inhibitor was found in culture broth of an actinomycete, strain YM-25. This inhibitor was designated as Haim, an abbreviation for hog pancreatic α-amylase inhibitor from a microbe. The determined morphological and physiological properties of strain YM-25 led to the conclusion that the microorganism was Streptomyces griseosporeus.

When the microorganism was aerobically cultured at 30°C in a jar fermentor containing the most suitable medium for growth which consisted of 5% glycerol, 0.5% polypepton, 0.2% meat extract, 0.1% yeast extract, 0.4% Na2HPO4 ? 12H2O, 0.1% KH2PO4, and 0.05% MgSO4 ? 7H2O (pH 7.3), the highest activity of Haim was obtained on 23~26hr cultivation.

Haim had specific inhibitory activities against animal α-amylases but not against microbial and plant α-amylases.  相似文献   

7.
For thermostable lipase production by Humicola lanuginosa No. 3, a simple optimized medium consisting of (%, w/v): sorbitol, 1.0; corn steep liquor, 1.0; NaCl, 0.5; CaCl2–2H20, 0.01; Silicone Km-70 (antifoamer), 0.2; and whale oil or castor oil as a lipase inducer, 0.3, was used. The yield of the lipase was about 80 — 120U/ml after 25 hr aerobic cultivation at 45°C when the pH was maintained at 7 to 8. The acetone powder preparation of the enzyme was most active at pH 7.0 and 45°C. The enzyme retained 100% activity on incubation for 20 hr at 60°C. The enzyme was able to hydrolyze almost all forms of natural fats tested (14 kinds), coconut oil being the most rapidly hydrolyzed.  相似文献   

8.
The formation of aromatic l-amino acid decarboxylase in bacteria was studied with intact cells in a reaction mixture containing the aromatic l-amino acids, 3,4-dihydroxy-l-phenyl-alanine, l-tyrosine, l-phenylalanine, l-tryptophan and 5-hydroxy-l-tryptophan. Activity was widely distributed in such genera as Achromobacter, Micrococcus, Staphylococcus and Sarcina. Bacterial strains belonging to the Micrococcaceae showed especially high decarboxylase activity toward l-tryptophan, 5-hydroxy-l-tryptophan and l-phenylalanine. M. percitreus AJ 1065 was selected as a promising source of aromatic l-amino acid decarboxylase. Results of experiments with this bacterium showed that the aromatic amine formed from l-tryptophan by the enzymatic method was identical with tryptamine. M. percitreus constitutively produced an enzyme which exhibited decarboxylase activity toward l-tryptophan. However, when large amounts of the aromatic l-amino acids listed above or the tryptamine formed from l-tryptophan were added, enzyme formation was repressed.

Cells with high enzyme activity were prepared by cultivating this bacterium at 30°C for 24 hr in a medium containing 0.5% glycerol, 0.5% yeast extract, 0.5% Polypepton, 3.0 vol % soybean protein hydrolyzate, 0.1% KH2PO4, 0.1% MgSO4 · 7H2O, 0.001% FeSO4 · 7H2O and 0.001% MnSO4 · 5H2O in tap water (pH 8.0).  相似文献   

9.
An amylase inhibitor-producing microorganism was identified as a subspecies of Strepto- myces diastaticus from morphological and physiological studies and was named Streptomyces diastaticus subsp. amylostaticus No. 2476.

When this strain was aerobically cultured in a shaking flask containing 100 ml of medium consisting of 4% corn starch, 2% soy bean flake extract, 0.3 % NaCl, 0.1 % K2HPO4, 0.05% MgSO4·7H2O, 0.001% FeS04 · 7H2O, 0.0001% CuSO4-5H2O, 0.0001% ZnSO4·7H2O, and 0.0001% MnS04 nH2O (pH 7.0) at 30°C, the highest inhibitory activity was obtained after 70 ~ 80 hr of cultivation.

This amylase inhibitor (S-AI) had inhibitory activity on α-amylases and glucoamylase, but not on β-amylases and pullulanase.  相似文献   

10.
Thirty-five strains capable of secreting extracellular alkaline proteases were isolated from the soil and waste water near the milk processing plant, slaughterhouse. Strain APP1 with the highest-yield alkaline proteases was identified as Bacillus sp. The cultural conditions were optimized for maximum enzyme production. When the initial pH of the medium was 9.0, the culture maintained maximum proteolytic activity for 2,560 U ml−1 at 50°C for 48 h under the optimized conditions containing (g−1): soyabean meal, 15; wheat flour, 30; K2HPO4, 4; Na2HPO4, 1; MgSO4·7H2O, 0.1; Na2CO3, 6. The alkaline protease showed extreme stability toward SDS and oxidizing agents, which retained its activity above 73 and 110% on treatment for 72 h with 5% SDS and 5% H2O2, respectively.  相似文献   

11.
A mechanism for the bioreduction of H2PtCl6 and PtCl2 into platinum nanoparticles by a hydrogenase enzyme from Fusarium oxysporum is proposed. Octahedral H2PtCl6 is too large to fit into the active region of the enzyme and, under conditions optimum for nanoparticle formation (pH 9, 65°C), undergoes a two-electron reduction to PtCl2 on the molecular surface of the enzyme. This smaller molecule is transported through hydrophobic channels within the enzyme to the active region where, under conditions optimal for hydrogenase activity (pH 7.5, 38°C) it undergoes a second two-electron reduction to Pt(0). H2PtCl6 was unreactive at pH 7.5, 38°C; PtCl2 was unreactive at pH 9, 65°C.  相似文献   

12.
Two kinds of N-acetylmuramidase, M-1 and M-2 enzymes, that were isolated from the cultural broth of Stm. globisporus 1829, were remarkably different in amino acid composition, immunological properties and modes of lytic action from each other. The M-1 enzyme was composed of 186 amino acid residues of which two moles were of half cystine, while the M-2 enzyme was composed of 99 amino acid residues with no cysteine. The hydrolyzing action of the M-2 enzyme was suppressed by the presence of an O-acetyl group on muramic acid residues in the peptidoglycan moiety, while that of the M-l enzyme was independent of the presence of O-acetyl groups. However, the hydrolyzing activity of both enzymes was enhanced when some muramic acid residues were substituted with stem peptides containing alanine, isoglutamine and lysine.  相似文献   

13.
Screening was carried out to obtain microorganisms which produced the enzyme to reduce the disulfide bond, from our type cultures of yeast. Among many strains of yeast showing activity to reduce the disulfide bond, Candida claussenii, Candida brumptii and Candida rugosa were selected to have the highest activity. The enzyme activity was detected in the cell free extracts, but not in culture broth.

The highest enzyme formation occured during the exponential growth phase, and rapid decrease of activity was observed in the stationary phase. Pantothenate and boron ion contributed to enzyme formation, and biotin and zinc ion to growth. The maximum enzyme activity was obtained in the following synthetic medium: 10% sucrose, 0.3% (NH4)2SO4, 0.5% KH2PO4, 0.15% MgCl2·6HO2 0.05% CaCl2, 0.015% MnCl2, 0.001% pantothenate, 0.0001% biotin, 0.0001% H3BO3, 0.00004% FeCl3·6H2O and 0.00008% ZnCl2. In addition, 30°C of the cultural temperature and vigorous aeration showed good results for enzyme formation.  相似文献   

14.
Four strains of Aspergillus (Aspergillus niger CDBB-H-176, A. niger CDBB-H-175, A. niger ATCC 9642, and Aspergillus terreus CDBB-H-194) were used to produce extracellular β-glucosidase. Using an orthogonal experimental design (L9), we optimized the parameters of culture medium to maximize the activity of β-glucosidase. The optimal conditions (same for the four strains) were as follows: temperature, 30°C; pH, 6.0; orbital agitation, 200?rpm; concentration of sucrose, 0.5% (w/v). The most productive strain was A. niger CDBB-H-175, with a yield of 701.2?U/mL. In a second stage, we optimized (L18) the concentration of nutrients in the culture medium to determine whether this modification would increase the production of β-glucosidase. The optimal conditions for A. niger CDBB-H-175 were as follows (%, w/v): NaNO3, 0.3; KCl, 0.3; KH2PO4, 0.15; NH4NO3, 0.1; NH4H2PO4, 0.1; MgSO4?·?7H2O, 0.05; yeast extract, 0.1. The production of β-glucosidase under these conditions was 1207.9?U/mL. Enzymatic assays were used to characterize the enzyme; the optimum temperature and pH of β-glucosidase produced by the four selected micro-organisms were found to be 65°C and 5.0, respectively. We determined the Michaelis–Menten constants (Km) only for A. niger CDBB-H-175 and CDBB-H-176; the values were 2.7 and 2.2?mM, respectively.  相似文献   

15.
Protease secreted into the culture medium by alkalophilic Thermoactinomyces sp. HS682 was purified to an electrophoretically homogeneous state through only two chromatograhies using Butyl-Toyopearl 650M and SP-Toyopearl 650S columns. The purified enzyme has an apparent relative molecular mass of 25, 000 according to gel filtration on a Sephadex G-75 column and SDS-PAGE and an isoelectric point above 11.0.

Its proteolytic activity was inhibited by active-site inhibitors of serine protease, DFP and PMSF, and metal ions, Cu2+ and Hg2+. The enzyme was stable toward some detergents, sodium perborate, sodium triphosphate, sodium-n-dodecylbenzenesulfonate, and sodium dodecyl sulfate, at a concentration of 0.1% and pH 11.5 and 37°C for 60 min. The optimum pH was pH 11.5–13.0 at 37°C and the optimum temperature was 70°C at pH 11.5. Calcium divalent cation raised the pH and heat stabilities of the enzyme. In the presence of 5 mM CaCl2, it showed maximum proteolytic activity at 80°C and stability from pH 4–12.5 at 60°C and below 75°C at pH 11.5. The stabilization by Ca2+ was observed in secondary conformation deduced from the circular dichroic spectrum of the enzyme. The protease hydrolyzed the ester bond of benzoyl leucine ester well. The amino acid terminal sequence of the enzyme showed high homology with those of Microbiol serine protease, although alanine of the NH2-terminal amino acid was deleted.  相似文献   

16.
Four strains of Aspergillus niger were screened for lipase production. Each was cultivated on four different media differing in their contents of mineral components and sources of carbon and nitrogen. Aspergillus niger NRRL3 produced maximal activity (325U/ml) when grown in 3% peptone, 0.05% MgSO4.7H2O, 0.05% KCl, 0.2% K2HPO4 and 1% olive oil:glucose (0.5:0.5). A. niger NRRL3 lipase was partially purified by ammonium sulphate precipitation. The majority of lipase activity (48%) was located in fraction IV precipitated at 50–60% of saturation with a 18-fold enzyme purification. The optimal pH of the partial purified lipase preparation for the hydrolysis of emulsified olive oil was 7.2 and the optimum temperature was 60°C. At 70°C, the enzyme retained more than 90% of its activity. Enzyme activity was inhibited by Hg2+ and K+, whereas Ca2+ and Mn2+ greatly stimulated its activity. Additionally, the formed lipase was stored for one month without any loss in the activity.  相似文献   

17.
We sought optimum culture conditions for the production by Pseudomonas chlororaphis B23 of nitrile hydratase activity. Addition of ferric and ferrous ions and the use of methacrylamide as an inducer greatly enhanced nitrile hydratase formation. When P. chlororaphis B23 was cultivated for 26 hr at 25°C in a medium consisting of 1 g of sucrose, 0.5 g of methacrylamide, 0.2 g of l-cysteine, 0.2 g of l-glutamate (Na), 0.2g of l-proline, 50 mg of KH2PO4, 50 mg of K2HPO4, 50 mg of MgSO4·7H20, and 1 mg of FeSO4·7H20 per 100 ml of tap water with the pH controlled at pH 7.5 to 7.8, the enzyme activity in the culture broth was 900-times that previously reported.  相似文献   

18.
A bacterial strain WJ-98 found to produce active extracellular keratinase was isolated from the soil of a poultry factory. It was identified asParacoccus sp. based on its 16S rRNA sequence analysis, morphological and physiological characteristics. The optimal culture conditions for the production of keratinase byParacoccus sp. WJ-98 were investigated. The optimal medium composition for keratinase production was determined to be 1.0% keratin, 0.05% urea and NaCl, 0.03% K2HPO4, 0.04% KH2PO4, and 0.01% MgCl2·6H2O. Optimal initial pH and temperature for the production of keratinase were 7.5 and 37°C, respectively. The maximum keratinase production of 90 U/mL was reached after 84 h of cultivation under the optimal culturing conditions. The keratinase fromParacoccus sp. WJ-98 was partially purified from a culture broth by using ammonium sulfate precipitation, ion-exchange chromatography on DEAE-cellulose, followed by gel filtration chromatography on Sephadex G-75. Optimum pH and temperature for the enzyme reaction were pH 6.8 and 50°C, respectively and the enzymes were stable in the pH range from 6.0 to 8.0 and below 50°C. The enzyme activity was significantly inhibited by EDTA, Zn2+ and Hg2+. Inquiry into the characteristics of keratinase production from these bacteria may yield useful agricultural feed processing applications.  相似文献   

19.
An endoglucanase was purified to homogeneity from an alkaline culture broth of a strain isolated from␣seawater and identified here as Bacillus agaradhaerens JAM-KU023. The molecular mass was around 38-kDa and the N-terminal 19 amino acids of the purified enzyme exhibited 100% sequence identity to Cel5A of B. agaradhaerens DSM8721T. The enzyme activity increased around 4-fold by the addition of 0.2–2.0 M NaCl in 0.1 M glycine–NaOH buffer (pH 9.0). KCl, Na2SO4, NaBr, NaNO3, CH3COONa, LiCl, NH4NO3, and NH4Cl also activated the enzyme up to 2- to 4-fold. The optimal pH and temperature values were pH 7–9.4 and 60 °C with 0.2 M NaCl, but pH 6.5–7 and 50 °C without NaCl; enzyme activity increased approximately 6-fold at 60 °C with 0.2 M NaCl compared to that at 50 °C without NaCl in 0.1 M glycine–NaOH buffer (pH 9.0). The thermostability and pH stability of the enzyme were not affected by NaCl. The enzyme was very stable to several chemical compounds, surfactants and metal ions (except for Fe2+ and Hg2+ ions), regardless whether NaCl was present or not. * The nucleotide sequence of 16S rRNA of this strain has been submitted to DDBJ, EMBL, and GenBank databases under accession no. AB211544.  相似文献   

20.
An alkaline protease producerBacillus licheniformis strain was isolated from Van Lake in Turkey. The strain is Gram positive, aerobic, motile, sporulating rod-shaped bacterium. Spores were ellipsoidal and positioned central in nonswollen sporangium. The cells were able to grow well at a pH range of 5.7–10. The optimal growth temperature was found to be 37 °C. Growth at a wide range of NaCl concentration (from 0 to 20%) showed that BA17 is halotolerant. Main fatty acid composition of BA17 was anteiso-C15:0 and iso-C15∶0. The strain was presumptively identified asB. licheniformis according to 16S rDNA gene sequence analysis. The most appropriate medium for the growth and protease production is composed of 0.5% yeast extract, 0.5% NaNO3, 0.02% MgSO4\7H2O, 0.1% K2HPO4 and 0.5% maltose. The optimum temperature and pH of the alkaline protease of strain BA17 were found to be 60 °C and pH 11, respectively. The activity was completely lost in the presence of PMSF, suggesting that the preparation contains serine-alkaline protease(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号