首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Two novel gibberellins, GA21 (I) and GA22 (II), were isolated from immature seeds of sword bean, Canavalia gladiata DC. The isolation procedure of these substances as well as their growth-promoting effects on dwarf maize mutants d1 and d5, rice, cucumber and dwarf peas (Progress No. 9) are described.

The structures of two new gibberellins, GA21 and GA22, isolated from immature seeds of sword bean, were determined as 4aα, 7α-dihydroxy-8-methylenegibbane-1, 1, 10β-tricarboxylic acid 1→4a lactone (II) and 4aα, 7α-dihydroxy-l β-hydroxymethyl-8-methylenegibb-2-ene-1α, 10β-dicaboxylic acid 1→4a lactone (IV), respectively, on the basis of chemical and physicochemical studies.  相似文献   

2.
The levels of gibberellin A1 (GA1), GA20, GA19, GA8, GA29 and GA81 (2-epiGA29) were measured in tall (L-) and dwarf (ll) sweet-pea plants grown in darkness and in light. In both environments the apical portions of dwarf plants contained less GA1; GA8 and GA19, but more GA20, GA29, and GA81 than did those of tall plants. It is concluded that the partial block in 3β-hydroxylation of GA20 to GA1 is imposed by allele l in darkness as well as in the light. Furthermore, darkness does not appear to enhance elongation in sweet pea by increasing GA1 levels. The reduction of the pool size of GA19 in dwarf plants supports recent theories on the regulation of GA biosynthesis, formulated on the basis of observations in monocotyledonous species. Darkness results in decreased GA20, GA29, and GA81 levels in the apical portions of tall and dwarf plants and possible reasons for this are discussed.  相似文献   

3.
ent-15α-Hydroxykaurenoic acid (8) was synthesized and fed to a mycelium suspension of Gibberella fujikuroi in the presence of 1-n-decylimidazole, a gibberellin biosynthesis inhibitor. The metabolites included 15β-hydroxy GA24, GA45 (GA of Pyrus communis), 15β-hydroxy GA15 and 15β-hydroxy GA25. Microbial production of 12α-hydroxy GAs from ent-12β-hydroxykaurene is also described.  相似文献   

4.
Orchard-grown dwarf apple (Malus domestica Borkh.) trees selected from a hybrid population were propagated by tissue culture but had a growth pattern similar to standard cv. Golden Delicious plants when grown at constant 27°C instead of the expected dwarf pattern of growth. Shoot elongation was markedly reduced, with or without gibberellin A1 (GA1) or GA4 treatment, when trees were grown in an environment where day temperature was maintained at 35°C for 2 h in a ramped regime (night 20°C day ramped to 35°C, held for 2 h and ramped down to 20°C night over a 14-h photoperiod). Application of GA1 or GA4 partially overcame growth retardation resulting from prior paclobutrazol treatment of both standard and dwarf trees grown at constant 27°C and of standard trees grown in the ramped environment. However, these GAs had no effect on paclobutrazol-treated or untreated dwarfs grown in the ramped regime. Gas chromatography-mass spectrometry with labelled internal standards was used to quantify GA1, GA3, GA8, GA19, GA20 and GA29 in extracts from standard and dwarf plants grown either at a constant 27°C or in a 20-30-20°C ramped temperature regime. Standard plants, which elongate quite rapidly in either environment, had similar levels of these GAs in both temperature regimes. The slowly growing dwarfs in the ramped temperature environment contained three times more GA19 than the rapidly elongating dwarfs grown at 27°C. The concentrations of the other GAs were reduced to ca 40% or less in plants grown in the ramped temperature regime compared with those grown at 27°C. These data suggest that shoot elongation of dwarf plants is sensitive to elevated temperatures both as a result of reduced responsiveness to GAs and because of a reduction in the concentration of GA1, apparently as a result of a lower rate of conversion of GA19 to GA20. It is possible that the altered GA metabolism may be a consequence of the change in GA sensitivity.  相似文献   

5.
The metabolism and growth-promoting activity of gibberellin A20 (GA20) were compared in the internode-length genotypes of pea, na le and na Le. Gibberellin A29 and GA29-catabolite were the major metabolites of GA20 in the genotype na le. However, low levels of GA1, GA8 and GA8-catabolite were also identified as metabolites in this genotype, confirming that the le allele is a leaky mutation. Gibberellin A20 was approximately 20 to 30 times as active in promoting internode growth of genotype na Le as of genotype na le. However, the levels of the 3-hydroxylated metabolite of GA20, GA8 (2-hydroxy GA1), were similar for a given growth response in both genotypes. In each case a close linear relationship was observed between internode growth and the logarithm of GA8 levels. A similar relationship was found on comparing GA20 metabolism in the three genotypes le d, le and Le. The former mutation results in a more severe dwarf phenotype than the le allele (which has previously been shown to reduce the 3-hydroxylation of GA20 to GA1). These results indicate that GA20 has negligible intrinsic activity and support the contention that GA1 is the only GA active per se in promoting stem growth in pea.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography  相似文献   

6.
A gibberellin 2β-hydroxylase has been purified from mature seeds ofPhaseolus vulgaris. The enzyme is of molecular weight 36,000 and has the characteristics of a dioxygenase; the cofactors areα-ketoglu-tarate, Fe2+ and ascorbate, and activity is stimulated by catalase. The Vmax of the enzyme is 6.86 nmole h?1 mg?1, and the Km values for [1,2-3H2]GA1 andα-ketoglutarate are 0.085 μM and 21 μM, respectively. The purified enzyme preparation catalyzes hydroxylation of GA1, GA4, GA9, and GA20 but exhibits a marked preference for the 3-hydroxylated gibberellins as substrate.  相似文献   

7.
The levels of the biologically active gibberellin (GA), GA1, and of its precursor, GA20, were monitored at several stages during ontogeny in the apical portions of isogenic tall (Le) and dwarf (le) peas (Pisum sativum L.) using deuterated internal standards and gas chromatography-selected ion monitoring. The levels of both GAs were relatively low on emergence and on impending apical arrest. At these early and late stages of development the internodes were substantially shorter than at intermediate stages, but were capable of large responses to applied GA3. Tall plants generally contained 10–18 times more GA1 and possessed internodes 2–3 times longer than dwarf plants. Further, dwarf plants contained 3–5 times more GA20 than tall plants. No conclusive evidence for the presence of GA3 or GA5 could be obtained, even with the aid of [2H2]GA3 and [2H2]GA5 internal standards. If GA3 and GA5 were present in tall plants, their levels were less than 0.5% and 1.4% of the level of GA1, respectively. Comparison of the effects of gene le on GA1 levels and internode length with the effects of ontogeny on these variables shows that the ontogenetic variation in GA1 content was sufficient to account for much of the observed variation in internode length within the wild-type. However, evidence was also obtained for substantial differences in the potential length of different internodes even when saturating levels of exogenous GA3 were present.Abreviations GAn gibberellin An We thank Noel Davies, Omar Hasan, Leigh Johnson, Katherine McPherson and Naomi Lawrence for technical help, Professor L. Mander (Australian National University, Canberra) for deuterated GA standards and the Australian Research Council for financial assistance.  相似文献   

8.
9.
A new gibberellin (GA) was identified from extracts of cotyledons of 7 day-old canola seedlings (Brassica campestris cv. Tobin). This GA is 12α-hydroxy-GA1 and has been assigned the trivial name of GA85. Isolation was monitored by the Tan-ginbozu dwarf rice micro-drop assay after each high-performance liquid chromatography (HPLC) step. Identification was based on Kovats retention index (KRI) and the mass spectrum of the methyl ester, trimethylsilyl ether (MeTMSi) derivative after analysis by gas chromatography-mass spectrometry (GC-MS) in comparison with an authentic sample of 12α-hydroxy-GA1. Based on quantitation by the dwarf rice micro-drop assay, GA85 is one of the major biologically active GAs in cotyledons of young canola seedlings.  相似文献   

10.
Pure samples of the antheridiogen of Anemia phyllitidis (AAn) were tested for their ability to affect the growth of dwarf corn (d5) and lettuce seedlings, and to influence α-amylase production by barley half-seeds. Stimulation of dwarf corn growth and barley amylase production was, on a molar basis, from 1/2 to 1/250 that given by GA3. In lettuce, AAn had a synergistic effect with low levels of GA3; alone, AAn was inhibitory or ineffective. Therefore, in addition to having a close chemical resemblance to gibberellin, AAn induces similar, but not identical physiological responses in flowering plants as well as ferns.  相似文献   

11.
Two aldehydic C20-gibberellins, L-2 and L-4, were isolated from the immature fruits of yellow lupine (Lupinus luteus L.). L-2 was shown to have the structure II and named gibberellin A23. L-4 was identified as gibberellin A19(VI). Two new C20-gibberellins, tentatively called 3,13-dihydroxy GA15(IV) and 13-hydroxy GA15(VIII), were derived from gibberellins, A23 and A19, respectively. The biological activities of four 3,13-dihydroxy C20-gibberellins-GA18(I), GA23(II), GA28(III) and 3,13-dihydroxy GA15(IV), which were isolated from the fruits except for 3,13-dihydroxy GA15—were compared in six gibberellin bioassays.  相似文献   

12.
A new gibberellin C20H26O6, tentatively named “bamboo gibberellin”, was isolated from water extract of bamboo shoots (Phyllostachys edulis) through successive purification procedures: countercurrent distribution, charcoal column chromatography, and silicic acid adsorption and partition chromatography. Its structure was established as lβ-methyl-4aα-fromyl-7α-hydroxy-8-methylenegibbane-lα,10β-dicarboxylic acid (VI) from analysis on infrared, NMR and mass spectra of its methyl ester.  相似文献   

13.
Sponsel VM  Reid JB 《Plant physiology》1992,100(2):651-654
Dwarf (le5839) seedlings of Pisum sativum respond to gibberellin A20 (GA20) in the dark, although the same dosage of GA20 applied to light-grown le5839 seedlings elicits no growth response. The acylcyclohexanedione growth retardant, LAB 198 999, which is known to inhibit gibberellin oxidation and in particular 3β-hydroxylation such as the conversion of GA20 to GA1, also inhibits the growth response of dark-grown dwarf (le5839) seedlings to GA20. Thus, the biological activity of GA20 in the dark appears to be a consequence of its conversion to GA1, even though it is known from studies with light-grown seedlings that the le mutation reduces the conversion of GA20 to GA1.  相似文献   

14.
A cell-free system prepared from developing seed of runner bean (Phaseolus coccineus L.) converted [14C]gibberellin A12-aldehyde to several products. Thirteen of these were identified by capillary gas chromatography-mass spectrometry as gibberellin A1 (GA1), GA4, GA5, GA6, GA15, GA17, GA19, GA20, GA24, GA37, GA38, GA44 and GA53-aldehyde, all giving mass spectra with 14C-isotope peaks. GA8 and GA28 were also identified but contained no 14C. All the [14C]GA12-aldehyde metabolites, except GA15, GA24 and GA53-aldehyde, are known endogenous GAs of P. coccineus.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC highperformance liquid chromatography - MVA mevalonic acid - S-2 2000-g supernatant  相似文献   

15.
Biological activity of some conjugated gibberellins   总被引:2,自引:0,他引:2  
Summary The biological activity of several gibberellin (GA) conjugates was studied and compared with that of the corresponding free GAs. The following conjugates were included: O(3)--d-glucopyranosides of GA1, GA3 and GA4; O(13)--d-glucopyranosides of GA1, GA3 and GA5; O(13)--d-glucopyranosyl-GA5--d-glucopyranosyl ester; GA3--d-glucopyranosyl ester and GA3--d-glucopyranosyl ester; N-GA3-oyl-glycine, its methyl ester, N-GA3-oyl-glycylglycine, and N-GA3-oyl-proline. All compounds were synthesized chemically but some of them are known to occur as endogenous plant products, or to be formed in plants upon application of a free GA. Activity was determined in the dwarf pea, dwarf corn, dwarf rice, and lettuce hypocotyl bioassays. The GA conjugates were found to posses different relative activities depending on the chemical structure, the bioassay system, and the site of application (shoot or roots). It is concluded that the activity of GA conjugates as measured in different bioassays is based upon the ability of plant enzymes and possibly of certain microorganisms to hydrolyze glucosidic, glucosyl ester, and amide-like linkages.Gibberellins-XLVIII. Part XLVII=Adam et al. (1976b)  相似文献   

16.
The structures of three new gibberellins A30, A48 and A49 and a new kaurenolide, isolated from seeds of Cucurbita pepo L., were elucidated. The structures of GA39, GA48 and GA49 were shown to be ent-3α,12β-dihydroxygibberell-16-ene-7,19,20-trioic acid (1), ent-2α,3α,10,12α-tetrahydroxy-20-norgibberell-16-ene-7,19-dioic acid 19,10-lactone (5) and the epimer at C–12 of GA48 (8), respectively. The kaurenolide was shown to have the structure: ent-6β,7α,12β-trihydroxykaur-16-en-19-oic acid 19,6-lactone (14).  相似文献   

17.
Apple (Malus domestica Borkh.) trees were propagated by budding from selected fully grown hybrids that ranged in height from 1.5 to 8 m. The growth and development of the selected budded trees after 7 years in the orchard was similar to that of the parent trees. Additional grafting studies showed that the dwarfism was not associated with the roots. Differences in photosynthetic activity and associated processes were not related to the size difference between tissue culture-propagated orchard-grown standard cv. Golden Delicious and dwarf hybrid trees. Applications of GA3 did not stimulate elongation of shoots of dwarf trees. Shoots of both standard and dwarf trees started to develop in mid-April when they contained nearly the same amounts of GA1, GA3 and GA8, but standard shoots contained higher concentrations of GA19, GA20 and GA29. On 2 June standard shoots were almost three times the length of dwarf shoots, but the number of leaves and area per leaf were nearly the same. The relative amounts of GAs on 12 May and 2 June for both plant types were similar to those on 20 April, except that GA19, GA20, GA1 and GA29 levels had declined. Gibberellin levels in standard shoots declined further between 2 and 22 June, after which there was no further shoot elongation or production of new leaves. Between 2 June and the end of the growing season, when summer temperatures were high, dwarf shoots continued to elongate slowly and to develop new leaves, which expanded little. During this time, the GA19 content of dwarf shoots nearly doubled, whereas the amounts of GA20, GA1, GA29 and GA8 declined. By the end of the season, standard shoots were 40 cm in length with 20 leaves and dwarf shoots were 28 cm in length, but with 36 leaves. High summer temperatures appear to induce loss of GA-responsiveness in orchard-grown dwarf trees and to cause a reduced rate of conversion of GA19 to GA20 in these genotypes.  相似文献   

18.
Elongation growth and gibberellin (GA9) metabolism in excised hypocotyls of lettuce (Lactuca sativa L. cv. Arctic) were investigated. Exogenously supplied GA9 stimulates elongation of hypocotyl sections and this response is intermediate between that elicited by GA1 or GA20 and GA4/7 mixture. Although uptake of radioactivity from [3H]GA9 increases with time, this gibberellin does not accumulate in the tissue but is rapidly converted to a compound with HPLC properties resembling those of [3H]GA20. After 2 h incubation in [3H]GA9, the presumptive GA20 represents 90% of the acidic ethyl acetate-soluble radioactivity in the tissue. Radioactivity is also associated with an acidic butanol-soluble fraction containing two components resolvable by HVE. The major component is similar in electrophoretic properties to a GA-glucosyl ether while the other compares to a GA-glucosyl ester. Conversion of [3H]GA9 to its [3H]GA20-like metabolite is reduced by addition of carrier GA9 or GA4/7 at concentrations as low as 1 M, while GA1, GA3 and L-proline are without effect. Formation of the GA20-like compound can be blocked by the addition of 2,2-dipyridyl, and this inhibitory effect of dipyridyl can be reversed by addition of Fe2+. At 200 M dipyridyl, elongation growth as well as [3H]GA9 metabolism are reduced by 80%. The relationship of the metabolism of GA9 to the growth response is discussed.Abbreviations AB butanol-soluble - AE ethyl-acetate-soluble - GA gibberellin - GA1, GA4 gibberellin A1, gibberellin A4, etc. - TLC thin layer chromatography - HPLC high performance liquid chromatography - HVE high voltage electrophoresis  相似文献   

19.
Gibberellin (GA) biosynthetic pathways from GA12-aldehyde, GA12 and GA53 were investigated in cell-free systems from developing embryos of Cucurbita maxima L. Gibberellin A12-aldehyde and GA12 were converted to GA25, putative 12α-hydroxyGA25, GA13 and GA39 as main products. Minor products were GA4, GA34 and, when GA12 was the substrate, putative 12α-hydroxyGA12. The intermediates GA15 and GA24 accumulated at low protein concentrations. The influence of various factors on GA12 metabolism was examined. At low 2-oxoglutarate and ascorbate concentrations, or at acid pH, 3β-hydroxylated products predominated, whereas with increasing 2-oxoglutarate and ascorbate concentrations, or at neutral pH, the yield of 12α-hydroxylated GAs increased. Gibberellin A53 was metabolised mainly to the C20-GAs GA44, GA19, GA17, GA23 and GA28, with the C19-GAs GA20, GA1 and GA8 as minor products. Only C19-GAs were 2β-hydroxylated, which is a main characteristic of the embryo systems. In addition to GA13, GA25, GA39, GA43, GA49, GA58, GA74, 12α-hydroxyGA25 and GA39 3-isovalerate, which were known previously from embryos of C. maxima, GA1, GA4, GA17, GA28, GA37, GA38, GA48, GA85, 12α-hydroxyGA37 and putative 12α-hydroxyGA43 were identified as endogenous components by full-scan capillary gas chromatography-mass spectrometry and Kovats retention indices. Evidence for putative 2β-hydroxyGA28 and GA23 was also obtained but it was less conclusive because of contamination.  相似文献   

20.
Stem elongation in Fuchsia × hybrida was influenced by cultivation at different day and night temperatures or in different light qualities. Internode elongation of plants grown at a day (25°C) to night (15°C) temperature difference (DIF+10) in white light was almost twofold that of plants grown at the opposite temperature regime (DIF−10). Orange light resulted in a threefold stimulation of internode elongation compared with white light DIF−10. Surprisingly, internode elongation in orange light was similar for plants grown at DIF−10 and DIF+10. Flower development was accelerated at DIF−10 compared with DIF+10 in both white and orange light. To examine whether the effects of DIF and light quality on shoot elongation were related to changes in gibberellin metabolism or plant sensitivity to gibberellins (GAs), the stem elongation responses of paclobutrazol-treated plants to applied gibberellins were determined. In the absence of applied gibberellins paclobutrazol (>0.32 μmol plant−1) strongly retarded shoot elongation. This inhibition was nullified by the application of about 10–32 nmol of GA1, GA4, GA9, GA15, GA19, GA20, GA24, or GA44. The results are discussed in relation to possible effects of DIF and light quality on endogenous gibberellin levels and gibberellin sensitivity of fuchsia and their effects on stem elongation. Received October 4, 1997; accepted December 17, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号