首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker's yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker's yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.  相似文献   

2.
Glucose 6-phosphate and fructose 1,6-diphosphate inhibit protein synthesis when added to lysed rabbit reticulocytes. Protein synthesis is inhibited 47% with 6 mM fructose 1,6-diphosphate and 86% with 6 mM glucose 6-phosphate. With 0.125 mM NAD+, the inhibitory effect of glucose 6-phosphate and fructose 1,6-diphosphate becomes stimulatory. The stimulation of protein synthesis in those assays with NAD+ and the phosphorylated sugars is 50% above those assays that contain NAD+ alone. The inhibition of protein synthesis by glucose 6-phosphate and the reversal of this inhibition by NAD+ occurs at a step before the synthesis of the initial dipeptide, methionyl-valine. These data illustrate the importance of NAD+ and the activation of glycolysis in regulating protein synthesis in lysed rabbit reticulocytes.  相似文献   

3.
2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker’s yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker’s yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.  相似文献   

4.
Several peaks of aldolase activity are found in the isoelectric focusing pattern of pea (Pisum sativum) leaf chloroplast extracts. One peak, separated by 0.5 pH unit from the major chloroplast aldolase peak, is found when cytoplasmic extracts are focused. The chloroplast and cytoplasmic enzymes have a pH 7.4 optimum with fructose 1,6-diphosphate. The Michaelis constant for fructose-1,6-diphosphate is 19 μM for the chloroplast, 21 μM for the cytoplasmic enzyme, and for sedoheptulose 1,7-diphosphate, 8 μM for the chloroplast enzyme, 18 μM for the cytoplasmic enzyme. Both enzymes are inhibited by d-glyceraldehyde 3-phosphate and by ribulose 1,5-diphosphate. The similarity in the catalytic properties of the isoenzymes suggests that both enzymes have an amphibolic role in carbon metabolism in the green leaf.  相似文献   

5.
When a buffered, aerobic suspension of ethanol-grown cells of Saccharomyces cerevisiae is treated with ethanol, a rapid flux of metabolism is observed from endogenous phosphoenolpyruvate to hexose monophosphates. Intracellular concentrations of phosphoenolpyruvate, 2-phosphoglycerate, and 3-phosphoglycerate record a monotonic drop, while those of triose phosphates and fructose 1,6-diphosphate fall after an early rise; fructose 6-phosphate, mannose 6-phosphate, and glucose 6-phosphate levels rise to a plateau. Prior growth on glucose extinguishes fructose 1,6-diphosphatase activity and completely arrests the rise of the hexose monophosphates. By using mutants blocked at a number of glycolytic steps it has been concluded that the metabolic flow takes place along the Embden-Meyerhof pathway in the reverse direction bypassing pyruvate kinase and fructose 6-phosphate kinase. Ethanol acts as a trigger by supplying NADH at the glyceraldehyde 3-phosphate dehydrogenase step. The rate of the reversal in the span phosphoenolpyruvate to fructose 1,6-diphosphate approaches 40 μ mol of 3-carbon units per minute per gram of wet cells. The in vivo activity of fructose 1,6-diphosphatase is nearly a quarter of this rate.  相似文献   

6.
1. Ox heart phosphofructokinase catalyses isotope-exchange reactions at pH6.7 between ADP and ATP, and between fructose 6-phosphate and fructose 1,6-diphosphate, the latter reaction being absolutely dependent on the presence of the magnesium complex of ADP. 2. The reaction kinetics are hyperbolic with respect to substrate concentration for both exchange reactions (within the experimental error). 3. The influence of pH, AMP and citrate suggests that the fructose 6-phosphate-fructose 1,6-diphosphate exchange is subject to effector control, and is abolished by dissociation of the enzyme. 4. These results are discussed in relation to the reaction mechanism of the enzyme.  相似文献   

7.
Purified bovine hepatic fructose-1,6-diphosphatase, which exhibits maximal activity at neutral pH, is competitively inhibited by several analogs of its substrate, fructose 1,6-diphosphate. These include glucose 1,6-diphosphate (Ki = 9.4 X 10(-5) M), hexitol 1,6-diphosphate (Ki = 2.3 X 10(-4) M), and 2,5-anhydro-D-mannitol 1,6-diphosphate (Ki = 3.3 X 10(-8) M), and 2,5-anhydro-D-glucitol 1,6-diphosphate (Ki = 5.5 X 10(-7) M). The Ki values for both 2,5-anhydro-D-mannitol 1,6-diphosphate and 2,5-anhydro-D-glucitol 1,6-diphosphate are lower than the Km of 1.4 X 10(-6) M for fructose 1,6-diphosphate. Since 2,5-anhydro-D-mannitol 1,6-diphosphate is an analog of the beta anomer of fructose 1,6-diphosphate and 2,5-anhydro-D-glucitol 1,6-diphosphate is an analog of the alpha anomer, the lower Ki for the mannitol analog may indicate that the beta anomer of fructose 1,6-diphosphate, which predominates in solution, is the true substrate. The substrate analog 1,5-pentanediol diphosphate inhibits slightly (K0.5 = 5 X 10(-3) M), but 1,4-cyclohexyldiol diphosphate does not. The Ki for product inhibition by sodium phosphate is 9.4 X 10(-3) M. 2,5-Anhydro-D-mannitol 1,6-diphosphate and alpha-D-glucose 1,6-diphosphate are substrates at pH 9.0, but not at pH 6.5.  相似文献   

8.
1. Purified rabbit-muscle and -liver glucose phosphate isomerase, free of contaminating enzyme activities that could interfere with the assay procedures, were tested for inhibition by fructose, fructose 1-phosphate and fructose 1,6-diphosphate. 2. Fructose 1-phosphate and fructose 1,6-diphosphate are both competitive with fructose 6-phosphate in the enzymic reaction, the apparent Ki values being 1·37×10−3−1·67×10−3m for fructose 1-phosphate and 7·2×10−3−7·9×10−3m for fructose 1,6-diphosphate; fructose and inorganic phosphate were without effect. 3. The apparent Km values for both liver and muscle enzymes at pH7·4 and 30° were 1·11×10−4−1·29×10−4m for fructose 6-phosphate, determined under the conditions in this paper. 4. In the reverse reaction, fructose, fructose 1-phosphate and fructose 1,6-diphosphate did not significantly inhibit the conversion of glucose 6-phosphate into fructose 6-phosphate. 5. The apparent Km values for glucose 6-phosphate were in the range 5·6×10−4−8·5×10−4m. 6. The competitive inhibition of hepatic glucose phosphate isomerase by fructose 1-phosphate is discussed in relation to the mechanism of fructose-induced hypoglycaemia in hereditary fructose intolerance.  相似文献   

9.
2′-Deoxyribonucleosides are important as building blocks for the synthesis of antisense drugs, antiviral nucleosides, and 2′-deoxyribonucleotides for polymerase chain reaction. The microbial production of 2′-deoxyribonucleosides from simple materials, glucose, acetaldehyde, and a nucleobase, through the reverse reactions of 2′-deoxyribonucleoside degradation and the glycolytic pathway, was investigated. The glycolytic pathway of baker’s yeast yielded fructose 1,6-diphosphate from glucose using the energy of adenosine 5′-triphosphate generated from adenosine 5′-monophosphate through alcoholic fermentation with the yeast. Fructose 1,6-diphosphate was further transformed to 2-deoxyribose 5-phosphate in the presence of acetaldehyde by deoxyriboaldolase-expressing Escherichia coli cells via d-glyceraldehyde 3-phosphate. E. coli transformants expressing phosphopentomutase and nucleoside phosphorylase produced 2′-deoxyribonucleosides from 2-deoxyribose 5-phosphate and a nucleobase via 2-deoxyribose 1-phosphate through the reverse reactions of 2′-deoxyribonucleoside degradation. Coupling of the glycolytic pathway and deoxyriboaldolase-catalyzing reaction efficiently supplied 2-deoxyribose 5-phosphate, which is a key intermediate for 2′-deoxyribonucleoside synthesis. 2′-Deoxyinosine (9.9 mM) was produced from glucose, acetaldehyde, and adenine through three-step reactions via fructose 1,6-diphosphate and then 2-deoxyribose 5-phosphate, the molar yield as to glucose being 17.8%.  相似文献   

10.
Fructose 2,6-diphosphate and glucose 1,6-diphosphate concentrations were determined during late gestation and over the course of suckling in rat brain cortex and cerebellum. Cortex fructose 2,6-diphosphate concentration was greatest in neonatal animals and gradually declined thereafter by 25% to reach the adult level at 15 days of age. In contrast, the glucose 1,6-diphosphate concentration increased 4-fold over the same period to reach its highest level by postnatal day 15. Neither cerebellar fructose 2,6-diphosphate nor glucose 1,6-diphosphate concentrations varied significantly. Six day cortex 6-phosphofructo-1-kinase was less sensitive to inhibition by citrate than the enzyme obtained from 15 day pups, and fructose 2,6-diphosphate was better than glucose 1,6-diphosphate at relieving the inhibition imposed by citrate at either age. It is suggested that the rise in cerebral glucose use which occurs during suckling cannot be attributed to either changes in the concentrations of fructose 2,6-diphosphate or glucose 1,6-diphosphate, or the age-related differential sensitivity of 6-phosphofructo-1-kinase toward these effectors.  相似文献   

11.
Two novel procedures have been used to regulate, in vivo, the formation of phosphoenolpyruvate (PEP) from glycolysis in Streptococcus lactis ML3. In the first procedure, glucose metabolism was specifically inhibited by p-chloromercuribenzoate. Autoradiographic and enzymatic analyses showed that the cells contained glucose 6-phosphate, fructose 6-phosphate, fructose-1,6-diphosphate, and triose phosphates.Dithiothreitol reversed the p-chloromercuribenzoate inhibition, and these intermediates were rapidly and quantitatively transformed into 3- and 2-phosphoglycerates plus PEP. The three intermediates were not further metabolized and constituted the intracellular PEP potential. The second procedure simply involved starvation of the organisms. The starved cells were devoid of glucose 6-phosphate, fructose 6-phosphate, fructose- 1,6-diphosphate, and triose phosphates but contained high levels of 3- and 2-phosphoglycerates and PEP (ca. 40 mM in total). The capacity to regulate PEP formation in vivo permitted the characterization of glucose and lactose phosphotransferase systems in physiologically intact cells. Evidence has been obtained for "feed forward" activation of pyruvate kinase in vivo by phosphorylated intermediates formed before the glyceraldehyde-3-phosphate dehydrogenase reaction in the glycolytic sequence. The data suggest that pyruvate kinase (an allosteric enzyme) plays a key role in the regulation of glycolysis and phosphotransferase system functions in S. lactis ML3.  相似文献   

12.
1. Fructose 1,6-diphosphatase has been purified tenfold from rat liver. The final preparation was not contaminated by either glucose 6-phosphatase or phosphofructokinase. The properties of the enzyme have been investigated in an attempt to define factors that could be of revelance to metabolic control of fructose 1,6-diphosphatase activity. 2. The metal ions Fe2+, Fe3+ and Zn2+ inhibited the activity of fructose 1,6-diphosphatase even in the presence of an excess of mercaptoethanol; other metal ions tested had no effect. The inhibition produced by Zn2+ was reversed by EDTA, but that produced by either Fe2+ or Fe3+ was not reversible. 4. The enzyme has a very low Km for fructose 1,6-diphosphate (2·0μm). Concentrations of fructose 1,6-diphosphate above 75μm inhibited the activity; however, even at very high fructose 1,6-diphosphate concentrations only 70% inhibition was obtained. 5. The activity was also inhibited by low concentrations of AMP, which lowered Vmax. and increased Km for fructose 1,6-diphosphate. Evidence is presented that suggests that AMP can be defined as an allosteric inhibitor of fructose 1,6-diphosphatase. 6. The inhibitions by both fructose 1,6-diphosphate and AMP were extremely specific. Also, the degree of inhibition was not affected by the presence of intermediates of glycolysis, of the tricarboxylic acid cycle, of amino acid metabolism or of fatty acid metabolism. 7. It is suggested that the intracellular concentrations of AMP and fructose 1,6-diphosphate could be of significance in controlling the activity of fructose 1,6-diphosphatase in the liver cell. The possible relationship between these intermediates and the control of gluconeogenesis is discussed.  相似文献   

13.
Abstract : In this work, it is shown that the Ca2+-transport ATPase found in the microsomal fraction of the cerebellum can use both glucose 6-phosphate/hexokinase and fructose 1,6-bisphosphate/phosphofructokinase as ATP-regenerating systems. The vesicles derived from the cerebellum were able to accumulate Ca2+ in a medium containing ADP when either glucose 6-phosphate and hexokinase or fructose 1,6-bisphosphate and phosphofructokinase were added to the medium. There was no Ca2+ uptake if one of these components was omitted from the medium. The transport of Ca2+ was associated with the cleavage of sugar phosphate. The maximal amount of Ca2+ accumulated by the vesicles with the fructose 1,6-bisphosphate system was larger than that measured either with glucose 6-phosphate or with a low ATP concentration and phosphoenolpyruvate/pyruvate kinase. The Ca2+ uptake supported by glucose 6-phosphate was inhibited by glucose, but not by fructose 6-phosphate. In contrast, the Ca2+ uptake supported by fructose 1,6-bisphosphate was inhibited by fructose 6-phosphate, but not by glucose. Thapsigargin, a specific SERCA inhibitor, impaired the transport of Ca2+ sustained by either glucose 6-phosphate or fructose 1,6-bisphosphate. It is proposed that the use of glucose 6-phosphate and fructose 1,6-bisphosphate as an ATP-regenerating system by the cerebellum Ca2+-ATPase may represent a salvage route used at early stages of ischemia ; this could be used to energize the Ca2+ transport, avoiding the deleterious effects derived from the cellular acidosis promoted by lactic acid.  相似文献   

14.
Level of photosynthetic intermediates in isolated spinach chloroplasts   总被引:15,自引:12,他引:3       下载免费PDF全文
Latzko E  Gibbs M 《Plant physiology》1969,44(3):396-402
The level of intermediates of the photosynthetic carbon cycle was measured in intact spinach chloroplasts in an attempt to determine the cause of the induction lag in CO2 assimilation. In addition, transient changes in the level of the intermediates were determined as affected by a light-dark period and by the addition of an excess amount of bicarbonate during a period of steady photosynthesis. Assayed enzymically were: ribulose 1,5-diphosphate, pentose monophosphates (mixture of ribose 5-phosphate, ribulose 5-phosphate and xylulose 5-phosphate, hexose monophosphates (mixture of glucose 6-phosphate, glucose 1-phosphate, and fructose 6-phosphate), glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, glycerate acid 3-phosphate, a mixture of fructose 1,6-diphosphate and sedoheptulose 1,7-diphosphate, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP).  相似文献   

15.
Naught LE  Tipton PA 《Biochemistry》2005,44(18):6831-6836
The interconversion of glucose 1-phosphate and glucose 6-phosphate, catalyzed by Pseudomonas aeruginosa phosphomannomutase/phosphoglucomutase, has been studied by transient-state kinetic techniques. Glucose 1,6-bisphosphate is formed as an intermediate in the reaction, but an obligatory step in the catalytic cycle appears to be the formation of an enzyme-glucose 1,6-bisphosphate complex that is not competent to form either glucose 1-phosphate or glucose 6-phosphate directly. We suggest that during the lifetime of this complex the glucose 1,6-bisphosphate intermediate undergoes the 180 degrees reorientation that is required for completion of the catalytic cycle. The formation of glucose 1,6-bisphosphate from glucose 1-phosphate is in rapid equilibrium relative to the rest of the reaction, where K(eq) = 0.14. In the opposite direction, glucose 1,6-bisphosphate is formed from glucose 6-phosphate with a rate constant of 12 s(-)(1), and the reverse step occurs with a rate constant of 255 s(-)(1). The interconversion of the productive and nonproductive glucose 1,6-bisphosphate complexes occurs with a rate constant of 64 s(-)(1) in one direction and 48 s(-)(1) in the other direction. Glucose 1,6-bisphosphate remains associated with the enzyme during reorientation. Isotope trapping studies indicate that it partitions to form glucose 1-phosphate or glucose 6-phosphate 14.3 times more frequently than it dissociates from the enzyme.  相似文献   

16.
In gluconeogenesis, fructose 6-phosphate is formed from fructose 1,6-bisphosphate, and if fructose 1,6-bisphosphate were reformed by the phosphofructokinase reaction there would be a "gluconeogenic futile cycle." We assessed the extent of this cycling in Escherichia coli growing on glycerol 3-phosphate, using a medium containing 32Pi. Fructose 1,6-bisphosphate coming from glycerol 3-phosphate should be unlabeled, but any coming from fructose 6-phosphate should contain label from the gamma-position of ATP. The amount of labeling of the 1-position of fructose 1,6-bisphosphate was only 2 to 10% of that of the gamma-position of ATP in a series of isogenic strains differing in phosphofructokinases (Pfk-1, Pfk-2, or Pfk-2). In control experiments with glucose 6-phosphate instead of glycerol 3-phosphate, the two positions were equally labeled. Thus, although the presence of Pfk-2 causes gluconeogenic impairment (Daldal et al., Eur. J. Biochem., 126:373-379, 1982), gluconeogenic futile cycling cannot be the reason.  相似文献   

17.
1. Lactic acid formation in supernatant fractions of homogenates of cat or rat small-intestinal mucosa was measured under optimum conditions with glucose, fructose, glucose 6-phosphate, fructose 1,6-diphosphate or 3-phosphoglycerate as substrate. 2. Between 80 and 107% of the glycolytic activity of the homogenate was recovered in these particle-free preparations when glucose, fructose, glucose 6-phosphate or fructose 1,6-diphosphate was used as substrate. 3. Evidence was obtained that hexokinase and phosphofructokinase were the rate-limiting enzymes in the initial sequence of glycolytic reactions. The limitation of rate by hexokinase was much more pronounced in preparations from the cat than in those from the rat. 4. With subcellular preparations from cat or rat small intestine lactic acid was also formed from ribose 5-phosphate and at rates similar to those observed with glucose. 5. A higher rate of glycolysis was observed with glucose 6-phosphate as substrate with preparations from the proximal half of the small intestine of the rat as compared with the distal half. 6. Mucosal preparations from rats starved for 24-48hr. exhibited only about one-quarter of the glycolytic activity of those of fed control groups. The decreased rate of formation of lactic acid from either glucose or fructose was mainly due to a decrease in the activity of hexokinase(s). The activities of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase and a number of other enzymes were not significantly decreased by starvation. 7. The results are discussed in relation to metabolic control of glycolysis in other mammalian tissues.  相似文献   

18.
B?ck, August (Purdue University, Lafayette, Ind.), and Frederick C. Neidhardt. Properties of a mutant of Escherichia coli with a temperature-sensitive fructose-1,6-diphosphate aldolase. J. Bacteriol. 92:470-476. 1966.-A mutant of Escherichia coli in which fructose-1,6-diphosphate aldolase functions at 30 C but not at 40 C was used to study the physiological effect of a specific block in the Embden-Meyerhof glycolytic pathway. Growth of the mutant at 40 C was found to be inhibited by the presence of glucose or certain related compounds in the medium. At 40 C, glucose was metabolized at 30 to 40% of the control rate and was abnormal in that glucose was converted into other six-carbon substances (probably gluconate, in large part) that were released into the culture medium. The inhibition was complete, but transient; its duration depended upon the initial amount of inhibitor added. The resumption of growth at 40 C was correlated with the further catabolism of the excreted compounds. When glycerol was used to grow the mutant at 40 C, the growth inhibition by glucose was accompanied by cessation of glycerol metabolism. Growth on alpha-glycerol phosphate was not inhibited under these conditions, implicating glycerol kinase as a possible site of inhibition; no inhibition of glycerol kinase by sugar phosphates, however, could be detected in vitro. The inhibitory effect of glucose on growth at 40 C is not caused by a deficit of intracellular adenosine triphosphate, but may be the result of a generalized poisoning of many cell processes by a greatly increased intracellular concentration of fructose-1,6-diphosphate, the substrate of the damaged enzyme.  相似文献   

19.
1. The method proposed by Rognstad & Katz [(1976) Arch, Biochem, Biophys, 177, 337-345] for the determination of the fructose 6-phosphate/fructose 1,6-bisphosphate cycle by the randomization of carbon between C-1 and C-6 of glucose glucose formed from [1-14C] galactose was applied to anaesthetized rats and conscious mice. 2. It was checked that the hydrolysis of fructose 6-phosphate by glucose 6-phosphatase is too weak to invalidate the method. The participation of the Cori cycle in the randomization was negligible within the short experimental period used (2-4 min). 3. No detectable randomization of carbon was observed in starved animals, indicating that phosphofructokinase is inactive in this experimental condition. 4. Randomization of carbon was detected as soon as 1 min after administration of [1-14C] galactose to fed animals and was maximal at about 3-4 min. It was calculated that on average 15% of the glucose formed by the liver to fed rats was recycled through the triose phosphates. The extent of cycling was quite variable. Recycling was also observed in starved rats in which glucose had been administered intravenously 10 min previously. In these animals, recycling was completely inhibited by glucagon. 5. The main factors that appear to be responsible for the very large changes in recycling observed in various experimental conditions are the concentrations of fructose 1,6-bisphosphate and of fructose 6-phosphate and also the affinity of phosphofructokinase for fructose 6-phosphate. The concentration of nucleotides does not seem to play a role.  相似文献   

20.
Inosine is a potent primary stimulus of insulin secretion from isolated mouse islets. The inosine-induced insulin secretion was totally depressed during starvation, but was completely restored by the addition of 5 mM-caffeine to the medium and partially restored by the addition of 5 mM-glucose. Mannoheptulose (3 mg/ml) potentiated the effect of 10 mM-inosine in islets from fed mice. The mechanism of the stimulatory effect of inosine was further investigated, and it was demonstrated that pancreatic islets contain a nucleoside phosphorylase capable of converting inosine into hypoxanthine and ribose 1-phosphate. Inosine at 10 mM concentration increased the lactate production and the content of ATP, glucose 6-phosphate (fructose 1,6-diphosphate + triose phosphates) and cyclic AMP in islets from fed mice. In islets from starved mice inosine-induced lactate production was decreased and no change in the concentration of cyclic AMP could be demonstrated, whereas the concentration of ATP and glucose 6-phosphate rose. Inosine (10 mM) induced a higher concentration of (fructose 1,6-diphosphate + triose phosphates) in islets from starved mice than in islets from fed mice suggesting that in starvation the activities of glyceraldehyde 3-phosphate dehydrogenase or other enzymes below this step in glycolysis are decreased. Formation of glucose from inosine was negligible. Inosine had no direct effect on adenylate cyclase activity in islet homogenates. The observed changes in insulin secretion and islet metabolism mimic what is seen when glucose and glyceraldehyde stimulate insulin secretion, and as neither ribose nor hypoxanthine-stimulated insulin release, the results are interpreted as supporting the substrate-site hypothesis for glucose-induced insulin secretion according to which glucose has to be metabolized in the beta-cells before secretion is initiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号