首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The 7-keto-8-aminopelargonic acid (KAPA) synthetase activities of cell-free extracts from various bacteria were investigated. The experiments on the substrate specificity of KAPA synthetase, using crude cell-free extracts from bacteria having high enzyme activity, showed that l-serine and pyruvic acid could replace l-alanine, but that, when the enzyme was partially purified, these compounds were not effective. Many kinds of amino acids such as l-cysteine, l-serine, d-alanine, glycine, d-histidine, and l-histidine, inhibited the enzyme activity. This inhibition was found to be competitive with l-alanine. Pyridoxal 5′-phosphate, which is a cofactor of the enzyme, also inhibited the enzyme activity at high concentrations. The repression of KAPA synthetase by biotin occurred in Bacillus subtilis and B. sphaericus but not in Micrococcus roseus and Pseudomonas fluorescens, even at a concentration of 1000 mµg per ml of biotin.  相似文献   

2.
Crystalline tyrosine phenol lyase was prepared from the cell extract of Erwinia herbicola grown in a medium supplemented with l-tyrosine. The crystalline enzyme was homogeneous by the criteria of ultracentrifugation and acrylamide gel electrophoresis. The molecular weight was determined to be approximately 259,000. The crystalline enzyme catalyzed the conversion of l-tyrosine into phenol, pyruvate and ammonia, in the presence of added pyridoxal phosphate. The enzyme also catalyzed pyruvate formation from d-tyrosine, S-methyl-l-cysteine, 3, 4-dihydroxyphenyl-l-alanine, l- and d-serine, and l- and d-cysteine, but at lower rates than from l-tyrosine. l-Phenyl-alanine, l-alanine, phenol and pyrocatechol inhibited pyruvate formation from l-tyrosine.

Crystalline tyrosine phenol lyase from Erwinia herbicola is inactive in the absence of added pyridoxal phosphate. Binding of pyridoxal phosphate to the apoenzyme is accompanied by pronounced increase in absorbance at 340 and 425 mμ. The amount of pyridoxal phosphate bound to the apoenzyme was determined by equilibrium dialysis to be 2 moles per mole of enzyme. Addition of the substrate, l-tyrosine, or the competitive inhibitors, l-alanine and l-phenyl-alanine, to the holoenzyme causes appearance of a new absorption peak near 500 mμ which disappears as the substrate is decomposed but remains unchanged in the presence of the inhibitor.  相似文献   

3.
Tyrosine phenol lyase catalyzes a series of α,β-elimination, β-replacement and racemization reactions. These reactions were studied with intact cells of Erwinia herbicola ATCC 21434 containing tyrosine phenol lyase.

Various aromatic amino acids were synthesized from l-serine and phenol, pyrocatechol, resorcinol or pyrogallol by the replacement reaction using the intact cells. l(d)-Tyrosine, 3,4-dihydroxyphenyl-l(d)-alanine (l(d)-dopa), l(d)-serine, l-cysteine, l-cystine and S-methyl-l-cysteine were degraded to pyruvate and ammonia by the elimination reaction. These amino acids could be used as substrate, together with phenol or pyrocatechol, to synthesize l-tyrosine or l-dopa via the replacement reaction by intact cells. l-Serine and d-serine were the best amino acid substrates for the synthesis of l-tyrosine or l-dopa. l-Tyrosine and l-dopa synthesized from d-serine and phenol or pyrocatechol were confirmed to be entirely l-form after isolation and identification of these products. The isomerization of d-tyrosine to l-tyrosine was also catalyzed by intact cells.

Thus, l-tyrosine or l-dopa could be synthesized from dl-serine and phenol or pyrocatechol by intact cells of Erwinia herbicola containing tyrosine phenol lyase.  相似文献   

4.
Growth of various microorganisms in media containing high concentrations of glycine or d-amino acids was examined. Susceptibilities to glycine or d-amino acids differed among microorganisms, and the differences in susceptibility have no direct relation with Gram staining, morphological forms, and aerobic or anaerobic nature of the organisms. Certain glycine-resistant bacteria tested, which included Bacillus cereus, Staphylococcus aureus and Serratia marcescens, exhibited relatively high oxidative activities towards glycine. The inhibition of the growth of Escherichia coli by either glycine or d-amino acids, which included d-threonine, d-alanine and d-lysine, was reversed by l-alanine, partialy by l-serine, and not by l-lysine or l-threonine. These results suggest that the growth inhibition of microorganisms by d-amino acids was similar to that by glycine. The incorporation of l-alanine into E. coli cells which were preincubated with glycine was less than those of preincubated without glycine. Particularly, the incorporation into the cell wall fraction was most susceptible to glycine. An additive effect of penicillin and glycine was observed in the inhibition of cell wall biosynthesis as determined by the intracellular accumulation of N-acetylamino sugar compounds.  相似文献   

5.
Regulatory properties of the enzymes involved in aromatic amino acid biosynthesis in the mutant of Corynebacterium glutamicum which produces a large amount of aromatic amino acids were examined. A phenylalanine auxotrophic l-tyrosine producer, pr-20, had a 3-deoxy-d-arabinoheptulosonate-7-phosphate (DAHP) synthetase released from the feedback inhibition by l-phenylalanine, l-tyrosine and l-tryptophan and had a two-fold derepressed chorismate mutase. A pair of l-phenylalanine and l-tyrosine still strongly inhibited the chorismate mutase activity, though the enzyme was partially released from the inhibition by l-phenylalanine alone. A tyrosine auxotrophic l-phenylalanine producer, PFP-19-31, had a DAHP synthetase sensitive to the feedback inhibition by l-phenylalanine, l-tyrosine and l-tryptophan and had a prephenate dehydratase and a chorismate mutase both partially released from the feedback inhibition by l-phenylalanine. The mutant produced a large amount of prephenate as well as l-phenylalanine. A phenylalanine and tyrosine double auxotrophic l-tryptophan producer, Px-115-97, had an anthranilate synthetase partially released from the feedback inhibition by l-tryptophan and had a DAHP synthetase sensitive to the feedback inhibition. These data explained the mechanism of the production of aromatic amino acids by these mutants and supported the in vivo functioning of the control mechanisms of aromatic amino acid biosynthesis in C. glutamicum previously elucidated in vitro experiments.  相似文献   

6.
Syntheses of various γ-glutamylpeptides were examined taking use of the highly purified γ-glutamylcysteine synthetase from Proteus mirabilis. The accumulation of each peptide was measured after long time incubation, and good formation was observed in the synthesis of peptides of following amino acids, l-cysteine, l-α-aminobutyrate, l-serine, l-homoserine, glycine, l-alanine, l-norvaline, l-lysine, l-threonine, taurine and l-valine. Peptide syntheses were confirmed by analyses of the component amino acids, after hydrolysis of the peptides.

The structure of the glutamylpeptides, especially the peptide-linkage at the γ-carbonyl residue of l-glutamate, was determined by mass spectrometry of the N-trifluoroacetyl methylester derivatives of the glutamylpeptides. Enzymatic synthesis of γ-glutamyl-l-α-aminobutyrate was also confirmed by PMR spectrometry in the comparison with chemically synthesized compound.  相似文献   

7.
l-Alanine adding enzymes from Bacillus subtilis and Bacillus cereus which catalyzed l-alanine incorporation into UDPMurNAc were partially purified and the properties of the enzymes were examined. The enzyme from B. subtilis was markedly stimulated by reducing agents including 2-mercaptoethanol, dithiothreitol, glutathione and cysteine. Mn2+ and Mg2+ activated l-alanine adding activity and their optimal concentrations were 2 to 5 mm and 10 mm, respectively. The optimum pH was 9.5 and the Km for l-alanine was 1.8×10?4m. l-Alanine adding reaction was strongly inhibited by p-chloromercuribenzoate and N-ethyl-maleimide. Among glycine, l- and d-amino acids and glycine derivatives, glycine was the most effective inhibitor of the l-alanine adding reaction. The enzyme from B. cereus was more resistant to glycine than that from B. subtilis. Glycine was incorporated into UDPMurNAc in place of l-alanine, and the Ki for glycine was 4.2×l0?3m with the enzyme from B. subtilis. From these data, the growth inhibition of bacteria by glycine is discussed.  相似文献   

8.
ω-Amino acid: pyruvate aminotransferase, purified to homogeneity and crystallized from a Pseudomonas sp. F–126, has a molecular weight of 172,000 or 167,000±3000 as determined by the gel-filtration or sedimentation equilibrium method, respectively. The enzyme catalyzes the transamination between various ω-amino acids or amines and pyruvate which is the exclusive amino acceptor. α-Amino acids except l-α-alanine are inert as amino donor. The Michaelis constants are 3.3 mm for β-alanine, 19 mm for 2-aminoethane sulfonate and 3.3 mm for pyruvate. The enzyme has a maximum activity in the pH range of 8.5~10.5. The enzyme is stable at pH 8.0~10.0 and at up to 65°C at pH 8.0. Carbonyl reagents strongly inhibit the enzyme activity. Pyridoxal 5′-phosphate and pyridoxamine 5′-phosphate reactivate the enzyme inactivated by carbonyl reagents. The inhibition constants were determined to be 0.73 mm for d-penicillamine and 0.58 mm for d-cycloserine. Thiol reagents, chelating agents and l-α-amino acids showed no effect on the enzyme activity.  相似文献   

9.
The regulatory mechanisms in branched-chain amino acid synthesis were compared between 2-thiazolealanine (2-TA) resistant l-leucine and l-valine producing mutants and the 2-TA sensitive original strains of Brevibacterium lactofermentum 2256.

In the original strains, sensitive to 2-TA, α-isopropylmalate (IPM) synthetase, the initial enzyme specific for l-leucine synthesis, is sensitive to feedback inhibition and to repression by l-leucine, and α-acetohydroxy acid (AHA) synthetase, the common initial enzyme for synthesis of l-isoleucine, l-valine as well as l-leucine, is sensitive to feedback inhibition by each one of these amino acids, and to repression by them all. In strain No. 218, a typical l-leucine producer resistant to 2-TA, IPM synthetase was found to be markedly desensitized and derepressed, and AHA synthetase remained unaltered. On the contrary, in strain No. 333, l-valine producer resistant to 2-TA, AHA synthetase was found to be desensitized and partially derepressed, and IPM synthetase remained unaltered.

The genetic alteration of these regulatory mechanisms was discussed in connection with the accumulation pattern of amino acids.  相似文献   

10.
1. Several bacteria were isolated from soil which grew on both d- and l-aminolactam and whose cells had an activity to racemize them. They were identified as Achromobacter obae nov. sp., Achr. cycloclastes, Alcaligenes faecalis and Flavobacterium arborescens.

2. Racemization of d- and l-aminolactam was investigated using the lyophilized cells of Achr. obae nov. sp. The optimum pH value of the reaction was about 8.0. The racemizing activity was completely inhibited by 10?4 m hydroxylamine, and the inhibition was removed by 10?4 m pyridoxal phosphate. Five percent d- and l-aminolactam solutions were completely racemized with a concomitant slight formation of l-lysine.  相似文献   

11.
Properties of 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthetase from Corynebacterium glutamicum were examined using the cell free extract. The optimum pH for the reaction was broad ranging from 5.5 to 7.0 and the optimum temperature was 37°C. Co2+ inhibited the enzyme activity at 20°C, whereas Co2+ apparently stimulated the enzyme activity at 37°C because the ion protected the enzyme from inactivation at 37°C. Co2+ reversed the inhibition of the enzyme activity by EDTA. The activity of DAHP synthetase was feedback inhibited only weakly by l-phenylalanine, l-tyrosine or l-tryptophan alone, but was strongly inhibited synergistically by l-phenylalanine and l-tyrosine. l-Tryptophan enhanced the inhibition by the pair of l-tyrosine and l-phenylalanine. Maximal inhibition was near 90 % in the simultaneous presence of the three amino acids. Sensitivity of the enzyme to the inhibitors was lost during the purification process of the enzyme or during the reaction at 37°C. Especially sensitivity to l-tryptophan was easily lost. Co2+ protected the enzyme from the desensitization. Mutants resistant to p-fluorophenylalanine plus l-tyrosine (or 3-aminotyrosine) had DAHP synthetase which was released from the feedback inhibition by the three amino acids. The formation of the enzyme was not affected by aromatic amino acids.  相似文献   

12.
Effect of phenoxazine derivatives (actinomycin D, l,8-dimethyl-3-aminophenoxazone-2, 3-aminophenoxazone-2, sodium resazurate, gallocyanine, fluorescent blue and capri blue) on amino acid transport in rat small intestine was investigated using tissue accumulation method. Capri blue (CI–51015) inhibited the accumulation of l-leucine, l-alanine and l-valine, and scarcely inhibited that of D-glucose. Kinetic analysis showed that the inhibition of amino acid accumulation by this pigment was non-competitive. Actinomycin D had no effect on amino acids and d-glucose accumulation in vitro at the high and low concentrations of these substances. High concentration of actinomycin D and long period of incubation had no effect, too. Accumulation of amino acids into the intestinal tissue was not significantly decreased or increased by the presence of other phenoxazine derivatives.  相似文献   

13.
The mechanism of stereospecific production of l-amino acids from the corresponding 5-substituted hydantoins by Bacillus brevis AJ-12299 was studied. The enzymes involved in the reaction were partially purified by DEAE-Toyopearl 650M column chromatography and their properties were investigated. The conversion of dl-5-substituted hydantoins to the corresponding l-amino acids consisted of the following two successive reactions. The first step was the ring-opening hydrolysis to N-carbamoyl amino acids catalyzed by an ATP dependent l-5-substituted hydantoin hydrolase. This reaction was stereospecific and the N-carbamoyl amino acid produced was exclusively the l-form. N-Carbamoyl-l-amino acid was also produced from the d-form of 5-substituted hydantoin, which suggests that spontaneous racemization occurred in the reaction mixture. In the second step, N-carbamoyl-l-amino acid was hydrolyzed to l-amino acid by an N-carbamoyl-l-amino acid hydrolase, which was also an l-specific enzyme. The ATP dependency of the l-5-substituted hydantoin hydrolase was supposed to be the limiting factor in the production of l-amino acids from the corresponding 5-substituted hydantoins by this bacterium.  相似文献   

14.
An enzyme that catalyzes the synthesis of S-carboxymethyl- l-cysteine from 3-chloro- l-alanine (3-Cl-Ala) and thioglycolic acid was found in Escherichia coli W3110 and was designated as S- carboxymethyl-l-cysteine synthase. It was purified from the cell-free extract to electrophoretic homogeneity and was crystallized. The enzyme has a molecular weight of 84,000 and gave one band corresponding to a molecular weight of 37,000 on SDS-polyacrylamide gel electrophoresis. The purified enzyme catalyzed the β-replacement reactions between 3-CI-AIa and various thiol compounds. The apparent Km values for 3-Cl-Ala and thioglycolic acid were 40 mM and 15.4 mM. The enzyme showed very low activity as to the α,β-elimination reaction with 3-Cl-Ala and l-serine. It was not inactivated on the incubation with 3-Cl-Ala. The absorption spectrum of the enzyme shows a maximum at 412 nm, indicating that it contains pyridoxal phosphate as a cofactor. The N-terminal amino acid sequence was determined and the corresponding sequence was detected in the protein sequence data bank, but no homogeneous sequence was found.  相似文献   

15.
The mechanism of asymmetric production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 was examined by investigating the properties of the enzymes involved in the hydrolysis of dl-5-substituted hydantoins. The enzymatic production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 involved the following two successive reactions; the d-isomer specific hydrolysis, i.e., the ring opening of d-5-substituted hydantoins to d-form N-carbamyl amino acids by an enzyme, d-hydantoin hydrolase (d-HYD hydrolase), followed by the d-isomer specific hydrolysis, i.e., the cleavage of N-carbamyl-d-amino acids to d-amino acids by an enzyme, N-carbamyl-d-amino acid hydrolase (d-NCA hydrolase).

l-5-Substituted hydantoins not hydrolyzed by d-HYD hydrolase were converted to d-form 5- substituted hydantoins through spontaneous racemization under the enzymatic reaction conditions.

It was proposed that almost all of the dl-5-substituted hydantoins were stoichiometrically and directly converted to the corresponding d-amino acids through the successive reactions of d-HYD hydrolase and d-NCA hydrolase in parrallel with the spontaneous racemization of l-5-substituted hydantoins to those of dl-form.  相似文献   

16.
(1) Both glutaminases A and B of Pseudomonas aeruginosa are inactivated by urea and guanidine hydrochloride, and the activities are partially restored by removal of the denaturants, while sodium lauryl sulfate denatured irreversibly the isozymes. (2) Glutaminase A consists of 4 identical subunits (mol. wt, 35,000) and B is composed of one polypeptide chain (mol. wt., 67,000). (3) Glutaminase A, which catalyzes the hydrolysis and also the hydroxylaminolysis of L and D isomers of glutamine and asparagine, does not act on γ-N-substituted glutamine e.g., γ-glutamylhydrazide. Some l- and d-γ-glutamyl derivatives, e.g., l- and d-γ-glutamyl-hydrazide, l- and d-γ-glutamylmethylester, and l-γ-glutamyl-l-alanine are substrates for glutaminase B, which does not catalyze the hydrolysis and hydroxylaminolysis of asparagine. α-Amino adipamic acid and α-amino substituted amino acids are inert for both the isozymes. (4) The acylation step is rate-limiting in the catalytic reactions by both the isozymes.  相似文献   

17.
An inducible tryptophanase was crystallized from the cell extract of Proteus rettgeri grown in a medium containing l-tryptophan. The purification procedure included ammonium sulfate fractionation, heat treatment, DEAE-Sephadex and hydroxylapatite column chromatographies. Crystals were obtained from solutions of the purified enzyme by the addition of ammonium sulfate.

The crystalline enzyme preparation was homogeneous by the criteria of ultracentrifugation and zone electrophoresis. The molecular weight was determined to be approximately 210,000.

The crystalline enzyme catalyzed the degradation of l-tryptophan into indole, pyruvate and ammonia in the presence of added pyridoxal phosphate. The enzyme also catalyzed pyruvate formation from 5-hydroxy-l-tryptophan, 5-methyl-l-tryptophan, S-methyl-l-cysteine and l- cysteine. l-, d-Alanine, l-phenylalanine and indole inhibited pyruvate formation from these substrates.  相似文献   

18.
The enzyme which decomposes α-aminoisobutyric acid (AIB) to acetone in presence of pyruvate is active to various α-dialkyl-α-amino acids. From relative rates of decomposition of AIB, l-(+)isovaline, 2-ethyl-2-aminobutyrate and d-(?)isovaline, it was suggested that a carbon chain having a configuration of natural d-amino acids was required for the enzyme action.

On the other hand, this enzyme catalyzes the transamination between l-alanine and α-ketobutyrate. The equilibrium constant in the direction of l-α-aminobutyrate formation is 0.62. Electrophoretic migration, α-keto acid specificity and pH dependence of the aminotransferase activity were similar to those of AIB decomposing activity. Moreover, both activities increased in cells incubated by either l-α-aminobutyrate or AIB.  相似文献   

19.
3-Chloro-d-alanine chloride-lyase, which occurs in the cells of Pseudomonas putida CR 1-1, catalyzes not only the α,β-elimination reaction of 3-chloro-d-alanine to form pyruvate, but also its β-replacement reaction in the presence of a high concentration of sodium hydrosulfide to form d-cysteine. Using the β-replacement reaction, the enzymatic synthesis of d-cysteine by resting cells was investigated. The culture conditions for cell production of the bacterium with high d-cysteine-producing activity and the reaction conditions for d-cysteine production were optimized. Under these optimal reaction conditions, 100% of the added 3-chloro-d-alanine could be converted to d-cysteine and, as the highest yield, 20.6 mg of d-cysteine per 1.0 ml of reaction mixture could be synthesized.  相似文献   

20.
This work describes a method for the simultaneous determination of primary d- and l-amino acids and secondary amino acids such as d- and l-proline. In order to remove interferences in the simultaneous determination of primary and secondary amines, the primary amines were derivatized with o-phthalaldehyde/N-acetyl-l-cysteine (OPA/NAC) and subsequently with 1-(9-fluorenyl)ethyl chloroformate (FLEC) for secondary amines, in a pre-column separation derivatization technique. These fluorescent diastereomers of the amino acids were obtained within 3 min at room temperature and determined simultaneously by changing wavelengths during analysis in a single eluting run in the high-performance liquid chromatography column. This method, referred to as the “two-step labelling method,” is effective for the simultaneous determination of d- and l-amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号