首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two hundred and fiftyArthrobacter strains were tested in a basal salts-glucose medium for their ability to produce glutamic acid; 50 strains produced small amounts of glutamic acid and alanine, as well as traces of other amino acids. Five biotin-dependent strains produced extraordinarily large amounts of glutamic acid. One of these, which was identified asA. globiformis, was selected for further study. Glutamic acid was only produced by this organism at biotin levels suboptimal for growth; maximal production (0.45 moles of glutamic acid per mole of glucose consumed) occurred at a biotin level of 10–5 µg/ml. Other factors which markedly influenced glutamic acid production were temperature, (NH4)2SO4 concentration, and pH of the growth medium.The taxonomy of glutamic acid-producing bacteria and the correlation between biotin deficiency and glutamic acid production are discussed.  相似文献   

2.
Previously we reported that a mutant of Corynebacterium glutamicum ATCC14067 with reduced H+-ATPase activity, F172-8, showed an approximately two times higher specific rate of glucose consumption than the parent, but no glutamic acid productivity under the standard biotin-limited culture conditions, where biotin concentration was set at 5.5 microg/l in the production medium (Sekine et al., Appl. Microbiol. Biotechnol., 57, 534-540 (2001)). In this study, various culture conditions were tested to check the glutamic acid productivity of strain F172-8. The mutant was found to produce glutamic acid under exhaustive biotin limitation, where the biotin concentration of the medium was set at 2.5 microg/l with much smaller inoculum size. When strain F172-8 was cultured under the same biotin-limited conditions using a jar fermentor, 53.7 g/l of glutamic acid was produced from 100 g/l glucose, while the parent produced 34.9 g/l of glutamic acid in a medium with 5.5 microg/l biotin. The glutamic acid yield of strain F172-8 also increased under Tween 40-triggered production conditions (1.2-fold higher than the parent strain). The amounts of biotin-binding enzymes were investigated by Western blot analysis. As compared to the parent, the amount of pyruvate carboxylase was lower in the mutant; however, the amount of acetyl-CoA carboxylase did not significantly change under the glutamic acid production conditions. To the best of our knowledge, this is the first report showing that the H+-ATPase-defective mutant of C. glutamicum is useful in glutamic acid production.  相似文献   

3.
Glutamic acid producing bacteria accumulated a large amount of valine in the presence of the excess biotin, when sodium acrylate monomer (Na-AM) was added at the earlier phase of culture. Brevibacterium roseum ATCC 13825, particularly, accumulated the large amount of valine among bacteria tested and the conditions of valine accumulation by this strain were investigated.

The most effective addition time of Na-AM was at the earlier phase of logarithmic phase. The optimal concentration of Na-AM for the accumulation of valine was 1.0 per cent (v/v). Most effective nitrogen sources were the combination of 1.0 per cent urea and 0.2 per cent ammonium sulphate. The additions of Mn2+ and Fe2+ increased valine accumulation. By the excess concentration of biotin for growth, 20 μg/liter or more, did not affected valine accumulation, while the presence of the suboptimal condition of biotin for growth was not good for the formation of valine even in the presence of Na-AM. The accumulation of valine reached 9.0 mg/ml from 75.0 mg/ml of glucose in the presence of 50 μg/liter of biotin and 1.0 per cent (v/v) of Na-AM.

This strain possessed considerable activity of valine formation regardless of the addition of Na-AM and promoted the accumulation of valine by the addition of Na-AM.  相似文献   

4.
Arthrobacter globiformis isolated from Burdwan soil excretes glutamic acid in a glucose mineral salt medium with suboptimal level of biotin. Glutamate begins to accumulate in the medium from the mid-exponential phase of growth and its excretion could be prolonged by adjustment of pH to the neutral range. Among the different carbon and nitrogen sources tested glucose (8%) and ammonium nitrate (0.53%), respectively, were found to be most suitable. Molasses could not be used as a substitute for glucose even if antibiotics or Tween 80 are incorporated in the medium. Bacitracin (1 μg/mL) stimulated glutamate excretion. Atemperature of 28°C and an inoculum dose of 4% were optimal for production. Under optimal conditions, in the flask culture the isolate excreted 16.1 g glutamic acid per litre in 120 h. Glutamic acid isolated from the fermented broth was found to be purel-diastereomer.  相似文献   

5.
Brev. lactofermentum rapidly took up biotin from culture medium and stored it in the cells. The saturation level of the stored biotin (3.8 × 104 molecules/cell) exceeded the level required for the maximum growth by ten times, and the minimum level (1.3 × 103 molecules/cell) was the most adequate to the accumulation of l-glutamic acid. The stored cellular biotin over the minimum level was metabolically available in the subsequent culture lacking in supplemented biotin. The cellular biotin was gradually reduced to the minimum level with the multiplication of the cells, and them the accumulation of l-glutamic acid was observed. This relation between the level of cellular biotin and the accumulation of l-glutamic acid was impaired by the addition of Tween 60 or some saturated fatty acid. In the presence of biotin and Tween 60 the biotin-saturated cells turned into cells capable of accumulating l-glutamic acid keeping the maximum level; and in the same medium the cells having the minimum amount of biotin took up biotin and then were saturated with it, and yet the cells preserved the acid-accumulating property. It was confirmed with the use of bioautographic technique and avidin test that the biotin released from the cells by acid hydrolysis was identical with authentic d-biotin.  相似文献   

6.
It has been found that although Brevibacterium lactofermentum No. 2256 is incapable of accumulating l-glutamic acid in a biotin sufficient medium, it produces a large quantity of the acid in the presence of sucrose fatty acid ester. In a biotin deficient medium, however, the ester brought the unfavorable diminution of l-glutamic acid accumulation caused by the decrease of glucose consumption in an incubation period. The undesirable effects were practically lost when the ester was added to the culture medium after more than eight hours in the course of incubation. This fact suggests that the ester is concerned with the growth of microorganism. It is very interesting to elucidate the interrelation between sucrose fatty acid ester and biotin. For the maximum accumulation of l-glutamic acid corresponding increase in amount of the ester to the increasing concentration of biotin was necessary. The proportional relation did not extend to excedingly high levels of the two implicating factors. The further observations concerning the effects of the individual fatty acid esters such as sucrose stearate remain unsatisfactory.  相似文献   

7.
Summary A compound with folic acid activity is synthesized by growing as well as respiring cells of Lactobacillus arabinosus in the presence of p-aminobenzoic acid. The essentiality of glutamic acid is seen in studies with respiring cells.The free folic acid activity elaborated by Lactobacillus arabinosus reaches its maximum in about 48 hrs. and is present mainly in the culture filtrate.Additions of Tween 80, or biotin and of xanthine show marked stimulation of the synthesis of folic acid activity.With the organisms Streptococcus faecalis R and Lactobacillus casei, requiring exogenous folic acid for growth, it is seen that the entire folic acid activity resides in the cells and as citrovorum factor.Sulphanilamide inhibits the synthesis of folic acid activity by Lactobacillus arabinosus.  相似文献   

8.
Glutamic acid produced from palm waste hydrolysate by fermentation with Brevibacterium lactofermentum ATCC 13869 is produced with a remarkably high yield compared with that produced from pure glucose as a carbon source. The produce yield is 70 g/L with glucose, wherease, when palm waste hydrolysate is the fermentation medium in the same bioreactor under same conditions, it is 88 g/L. The higher yield may be attributed to the fact that this organism has the ability to convert sugars other than only glucose present in the hydrolysate. Bioreactor conditions most conducive for maximum production are pH 7.5, temperature of 30 degrees rmentation period of 48 h, inoculum size 6%, substrate concentration of 10 g per 100 mL, yeast extract 0.5 g per 100 mL as a suitable N source, and biotin at a concentration of 10 pg/L. Palm waste hydrolysate used in this study was prepared by enzymic saccharification of treated palm press fiber under conditions that yielded a maximum of 30 g/L total reducing sugars. Glutamic acid from fermentation broth was recovered by using a chromatographic column (5cm x 60 cm) packed with a strong ion-exchange resin. The filtered broth containing glutamic acid and other inorganic ions was fed to the fully charged column. The broth was continuously recycled at a flow rate of 50 mL/min (retention time of 55 min) until glutamic acid was fully adsorbed on the column leaving other ions in the effluent. Recovery was done by eluting with urea and sodium hydroxide for total displacement of glutamic acid from the resin. The eluent containing 88 g/L of glutamic acid was concentrated by evaporation to obtain solid crystals of the product. (c) 1995 John Wiley & Sons, Inc.  相似文献   

9.
Summary A cell suspension culture of poplar (Populus deltoides (Marsh.) Bartr. var.occidentalis Rydb.), accumulating the anthocyanin pigment, cyanidin 3-glucoside, in the lag phase of culture growth, was subjected to osmotic stress with glucose and mannitol. Osmotic stress treatments resulted in growth suppression and higher anthocyanin accumulation compared with unstressed cells. Both an increase in the proportion of pigmented cells and an increase in the concentration of anthocyanin in the pigmented cells were responsible for high anthocyanin content of cultured cells subjected to osmotic stress. The osmotic stress induced by glucose suppressed growth more than that by mannitol and produced higher anthocyanin levels. Only small amounts of [U-14C]mannitol were taken up and metabolized by the cells. Stressed cells accumulated sugars and free amino acids to a different extent resulting in altered cell sugar-to-amino acid ratios. The accumulation of osmotically active solutes and cell growth suppression may both be responsible for the accumulation of anthocyanin in stressed cells.  相似文献   

10.
To investigate primary effects of a pyruvate kinase (PYK) defect on glucose metabolism in Corynebacterium glutamicum, a pyk-deleted mutant was derived from wild-type C. glutamicum ATCC13032 using the double-crossover chromosome replacement technique. The mutant was then evaluated under glutamic acid-producing conditions induced by biotin limitation. The mutant showed an increased specific rate of glucose consumption, decreased growth, higher glutamic acid production, and aspartic acid formation during the glutamic acid production phase. A significant increase in phosphoenolpyruvate (PEP) carboxylase activity and a significant decrease in PEP carboxykinase activity occurred in the mutant, which suggested an enhanced overall flux of the anaplerotic pathway from PEP to oxaloacetic acid in the mutant. The enhanced anaplerotic flux may explain both the increased rate of glucose consumption and the higher productivity of glutamic acid in the mutant. Since the pyk-complemented strain had similar metabolic profiles to the wild-type strain, the observed changes represented intrinsic effects of pyk deletion on the physiology of C. glutamicum.  相似文献   

11.
Glutamic acid producer Brevibacterium lactofermentum intact cells were used to demonstrate the feasibility of in vivo 15N NMR to follow nitrogen assimilation and amino acid production throughout the growth cycle. The induction of glutamic acid production by different growth conditions was studied. Intracellular and extracellular levels of free metabolites were estimated as function of oxygen supply and biotin concentration. 15N NMR enabled us to distinguish two phases during the fermentation. At the early stage of fermentation, glutamic acid was accumulated intracellularly independent of oxygen supply and no product was excreted. In the late growth phase, the permeability of the cells developed and L-glutamic acid was excreted. The effect of aeration and biotin concentration on cellular contents and excretion was also studied by 15N NMR. Glutamate, N-acetylglutamine, and glutamine were the main nitrogenous pools independent of cell culture conditions. Free ammonia was not accumulated intracellularly although glutamic acid fermentation can be characterized as the process of nitrogen assimilation and the uptake of ammonia is the key step. In conclusion, the application of in vivo 15N NMR spectroscopy unraveled various problems of nitrogen metabolism, in a rapid and nondestructive manner.  相似文献   

12.
Ten species of non-pathogenic Neisseria were grown in simple defined liquid media containing amino acids, biotin, nicotinic acid, calcium pantothenate, ferrous sulfate, magnesium sulfate, and potassium phosphate. Two of these Neisseria were induced to grow with glutamic acid as the carbon and nitrogen source. The remaining eight Neisseria grew in glutamic acid medium supplemented with from one to four additional amino acids, lactate, or lactate and glucose. A strain of N. flavescens grew in the absence of added growth factors whereas the remaining nine species of Neisseria required either biotin or nicotinic acid; pantothenate was required by two and was stimulatory for three of these species. Use of carbohydrates by the non-pathogenic Neisseria in synthetic medium was tested. Two strains failed to use any of the 14 carbohydrates tested; one strain used only glucose; the remaining seven strains used fructose, glucose, maltose, and sucrose to varying degrees.  相似文献   

13.
Candida albicans strain B 311-10 with and without starvation was cultivated in the minimal synthetic medium of Shepherd et al. [18], modified without biotin, aminoacids, low glucose concentration [20] and with decreasing amounts of (NH4)2SO4, to determine the optimal growth requirement for this strain. All the experiments were carried out under sterile conditions at 25 °C in a thermostat with initial O.D.s (675 nm) of 0.500 and 0.100. Cell growth was generally monitored everyday for six days with a spectrophotometer by determining the absorbance of the cultures at 675 nm. All the experiments were repeated three times and a statistical analysis of the data with a probability of 99% and 1% of error was performed to confirm the validity of the results. Best growth was obtained with starved cells at an initial O.D. of 0.100 and with a 0.1 g/L concentration of (NH4)2SO4. At this concentration, the growth of C. albicans B 311-10 was best between the first and the fourth day with the maximum at the third day. With (NH4)2SO4 concentrations of 0.05 and 0.5 g/L, cell growth was the same.  相似文献   

14.
曲丹  王慧梅  任洁 《植物研究》2015,35(4):623-627
以迷迭香悬浮培养细胞为材料,详细研究了基本培养基中添加蔗糖、麦芽糖和葡萄糖对细胞生长及次生代谢产物积累的影响,同时对不同蔗糖浓度处理的悬浮培养细胞抗氧化酶活性进行了研究。研究结果表明:在不同的糖处理中,30 g·L-1的蔗糖、70 g·L-1的麦芽糖及40 g·L-1的葡萄糖最有利于迷迭香悬浮培养细胞生长。30 g·L-1蔗糖和70 g·L-1麦芽糖处理中悬浮培养细胞的生长率分别为74.08%和72.33%,高出40 g·L-1葡萄糖处理接近3倍之多。30 g·L-1蔗糖处理的悬浮培养细胞迷迭香酸含量高出70 g·L-1麦芽糖处理228倍,略低于40 g·L-1葡萄糖处理。在不同蔗糖的处理中,随着蔗糖浓度的增加,迷迭香酸含量均呈现增加趋势,表明高浓度的蔗糖有利于悬浮培养细胞迷迭香酸的积累。在高浓度的蔗糖处理中,悬浮培养细胞H2O2和MDA含量明显增加,同时抗氧化酶SOD、POD及CAT的活性也明显增强,表明高浓度的蔗糖产生了渗透胁迫,这种渗透胁迫虽不利于迷迭香悬浮培养细胞的生长,但有利于次生代谢产物的积累。综合迷迭香悬浮细胞的生长率和迷迭香酸的含量,我们最终得出30 g·L-1的蔗糖最有利于迷迭香悬浮细胞的培养。  相似文献   

15.
The Rhizobium sp., isolated from the root nodules of the leguminous fodder herb Melilotus alba, produced large amounts of extracellular polysaccharides (EPS) (963.5 μg/ml) in a yeast extract mannitol medium. Growth and EPS production started simultaneously, but EPS production reached its maximum during the stationary phase of growth of the bacteria, at 20 hours. EPS production was increased with all of the thirteen sugars tested. Different nitrogen sources, such as nitrates, glutamic acid, casamino acid and L-asparagine, increased the EPS production although it was inhibited by glycine, nitrite and ammonium salts. Among the vitamins and metal ions, only pyridoxal phosphate and ZnSO4 promoted EPS production. Attempts were made to optimize the cultural requirements for growth and maximum EPS production. Maximum EPS production (1457.0 μg/ml) was obtained when the medium was supplemented with glucose (1%), pyridoxal phosphate (2 μ g/ml), ZnSO4 × 7 H2O (10 μg/ml) and glutamic acid (0.1%). Under these conditions, the production was increased by 254.3% compared to the control. The EPS contained arabinose, xylose and rhamnose monomers. The presence of arabinose and xylose in the EPS produced by a Rhizobium sp. was uncommon.  相似文献   

16.
Suspension cultures of Coleus blumei were characterized with respect to growth and rosmarinic acid formation in media with different sugars and various sugar concentrations. Sucrose is the sugar with the highest stimulating effect on growth and rosmarinic acid accumulation, followed by glucose and fructose. The sugar alcohol mannitol cannot be metabolized by the plant cells. Sucrose is cleaved into glucose and fructose by the Coleus cells. Sucrose concentrations from 1 to 5% have an increasing positive effect on growth and rosmarinic acid synthesis in the cell cultures with a maximum rosmarinic acid content of 12% of the dry weight in medium with 5% sucrose; in medium with 6% sucrose rosmarinic acid accumulation obviously did not reach its highest level in the culture period of 14 days. A very high yield of rosmarinic acid (2 mg ml-1 suspension) could also be achieved by maintaining a sucrose concentration of 2% during the whole culture period. The start of rosmarinic acid synthesis by the cell cultures seems to be regulated by the growth limitation when a nutrient, e.g. phosphate is depleted from the medium. The rate of rosmarinic acid accumulation is related to the amount of carbon left in the medium when growth ceases.Abbreviations RA rosmarinic acid  相似文献   

17.
Resting cells of Fusobacterium nucleatum 10953 (grown previously in a medium containing glucose) failed to accumulate glucose under aerobic or anaerobic conditions. However, the addition of glutamic acid, lysine, or histidine to anaerobic suspensions of cells caused the immediate and rapid accumulation of glucose. Except for the amino acid-dependent transport of galactose and fructose (the latter being transported at approximately one-third the rate of glucose), no other sugars tested were accumulated by the resting cells. Amino acid-dependent uptake of sugar(s) by F. nucleatum was abolished by exposure of cells to air, and under aerobic conditions the rates of fermentation of glutamic acid and lysine were less than 15% of the rates determined anaerobically. The energy necessary for active transport of the sugars (acetyl phosphate and ATP) is derived from the anaerobic fermentation of glutamic acid, lysine, or histidine. Competition studies revealed that glucose and galactose were mutual and exclusive inhibitors of transport, and it is suggested that the two sugars (Km = 14 microM) are translocated via a common carrier. The products of amino acid-dependent sugar transport were recovered from resting cells as ethanol-precipitable, high-molecular-weight polymers. Polymer formation by F. nucleatum, during growth in medium containing glucose or galactose, was confirmed by electron microscopy.  相似文献   

18.
Chemically defined minimal media for the cultivation of high temperature tolerant and pathogenic Naegleria spp. have been developed. A defined minimal medium, identical for N. fowleri and N. lovaniensis, consists of eleven amino acids (arginine, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, threonine, tryptophan, and valine), six vitamins (biotin, folic acid, hemin, pyridoxal, riboflavin, and thiamine), guanosine, glucose, salts, and metals. Three of the four strains of Naegleria fowleri tested (ATCCr?30100, ATCCr?30863, and ATCCr?30896) and two strains of N. lovaniensis (ATCCr?30467 and ATCCr?30569) could be cultured beyond ten subcultures on this medium. For N. fowleri ATCCr?30894 diaminopimelic acid, or lysine, or glutamic acid was also required. Mean generation time was reduced and population density increased for all strains with the introduction of glutamic acid. Glucose could be eliminated from the minimal medium only if glutamic acid was present. Without glucose, mean generation time increased and population density decreased. Diaminopimelic acid could substitute for lysine for ATCCr?30894, indicating that Naegleria species may synthesize their lysine via the DAP pathway. Naegleria fowleri ATCCr?30100 could be adapted to grow without serine or glycine in the minimal medium with glutamic acid added, but with mean generation time increased and population density decreased. The strain could be grown in the minimal medium in the absence of metals. For growth of N. australiensis ATCCr?30958, modification of the medium by increasing metals ten-fold, substituting guanine for guanosine and adding lysine, glutamic acid, and six vitamins (p-aminobenzoic acid, choline chloride, inositol, vitamin B12, nicotinamide, and Ca pantothenate) was required.  相似文献   

19.
During the course of the study on biotin vitamers production by a hydrocarbon-utilizing bacterium, strain 5–2 (Pseudomonas sp.), it was found that crude RNA-alkali-hydrolyzate from yeast increased the accumulaion of biotin vitamers, most of which was determined as desthiobion, and that adenine in the crude RNA-alkali-hydrolyzate was a potent stimulator. Effect of adenine on biotin vitamers accumulation was observed in the medium with either hydrocarbon or glucose as a sole carbon source. The accumulation of total biotin vitamers by some other bacteria was also increased by adenine but that of true biotin was scarcely increased or inhibited by adenine.

The role of adenine on the accumulation of biotin vitamers was investigated with non-proliferating cells of strain 5–2, and it was supposed that adenine would not only inhibit the accumulation of true biotin but, as a result, cause the large accumulation of biotin vitamers which might be intermediates of biotin synthesis. When the medium was supplemented with excess biotin, complete repression occurred even in the presence of adenine.  相似文献   

20.
While in the absence of glucose, proline is not a required amino acid, in the presence of glucose the growth of Micrococcus pyogenes var. aureus in amino acid medium is proportional to the concentration of proline when all other amino acids and growth factors are present in amounts adequate for optimal growth. The data presented here and the ideas prevailing in the literature indicate that glutamic acid is a precursor of proline. Glucose inhibits the conversion of glutamic acid into proline, which in turn causes failure of growth. Thus, 1 μg. and 10 μg. glucose/ ml. cause 50% and 100% inhibition, respectively, of the growth dependent on the synthesis of proline. One μg. proline antagonizes completely the inhibition in the presence of 5,000 μg. glucose/ml.One μg. glycerol, 100 μg. pyruvate, 250 μg. lactate, or 100 μg. α-glycerophosphate/ml., individually, cause from 25 to 50% inhibition of the growth dependent on the synthesis of proline from glutamic acid. Five thousand μg./ml. either of malic, succinic, fumaric, α-keto-glutaric, cis-aconitic acid, or dihydroxyacetone, or 500 μg. citric acid/ml. fails to cause inhibition.Pyrrolidone carboxylic acid was found to substitute for glutamic acid but not for proline in tests with M. pyogenes var. aureus. Also, seven proline-less mutant strains of Escherichia coli were unable to utilize pyrrolidone carboxylic acid in place of proline. No evidence was obtained to indicate that pyrrolidone carboxylic acid could serve as a direct precursor of proline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号